История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Определение и приемы, сходные с ним.

2018-01-13 298
Определение и приемы, сходные с ним. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Определение, дефиниция (от лат. «definitio» – уточнение границ) – это логическая процедура придания строго фиксированного смысла языковым выражениям.

Приемы: остенсивное определение, описание и сравнение.

Остенсивное определение (от лат. «ostensio» – показывание) – это разъяснение языковых выражений путем непосредственного указания предметов, действий или ситуаций, обозначаемых этими выражениями. Остенсивными определениями часто пользуются в процессе обучения иностранным языкам и во многих других случаях, однако его применение ограничено. С его помощью можно разъяснить лишь термины, обозначающие что-то чувственно воспринимаемое. Значения слов «электрон» или «абстракция» остенсивно определить нельзя.

Остенсивные определения не являются собственно определениями, поскольку они не раскрывают смысла языкового выражения.

Описание. В этом случае вместо определения термина приводят более или менее подробный перечень тех признаков, которыми обладают предметы, подпадающие под него. Например, «Динго – это дикое животное похожее на собаку, водится только в Австралии и является хищником».

Сравнение. В большинстве своем они носят метафорический характер, например, «Тигр - это король джунглей».

20. Классическая логика высказываний.

Логика высказываний (пропозициональная логика) – это раздел логики, изучающий способы построения и логическую структуру высказываний, отношения между ними и выводы, полученные с помощью логических операций конъюнкции, дизъюнкции, импликации, эквиваленции, отрицания и т.д. Часто в логике это обозначается КЛВ – классическая логика высказываний. Алфавит логики высказываний включает в себя четыре вида символов:

1) пропозициональные переменныеp, q, r, s,...

2) пропозициональные связкиØ, &, Ú, Ú, É, º

3) скобки(…)

4) запятая -,

Пропозициональные переменные замещают собой простые высказывания. Например, высказывание «идет снег» можно обозначить символом p, высказывание «метет метель» – символом q, и т.д. Пропозициональные связки предназначены для того, чтобы объединять простые высказывания в более сложные. К ним относятся:

 

Øотрицание («не»; «неверно, что», «неправда, что» и т.п.)

& – конъюнкция («и», «а», «но», «хотя», и т.п.)

Úдизъюнкция («или», «по крайней мере одно из двух» и т.п.)

Úстрогая дизъюнкция («либо-либо», «только одно из двух» и т.п.)

Éимпликация («если, то», «значит», «вытекает» и т.п.)

ºэквиваленция («если и только если», «равнозначно» и т.п.)

Логика использует в своих построениях 2 типа искусст. языков: язык логики высказываний - использ. для рассмотр. суждений без учёта внутр. структуры, использует содержат. символы..; и язык предикатов -то,что утвержд. или отриц. в высказывании и раскрывает его внутр. структуру.

Субъект -лог. подлежащее суждения. Имя -объект или предмет, обозначающий какое-то языковое выражение. Хар-ки имени: Предметное значение(денотат)- один или множество каких-либо объектов, которые этим именем обознач.

Смысловое значение(концепт) -информация о предметах, т.е. присущие им св-ва, с помощью которых выделяют множество предметов.

Предикат -любой признак, присущий или нет тому или иному предмету в логике, конечно же предмету мысли.

Типы имён языка логики предикатов, определяемые спецификой объектов и представляющие собой его основные семантические категории:

Имена предметов- единичные предметы, явления, события или их множества (по составу:простые,сложные_по денотату:единичные,общие)

Имена признаков-качеств,св-в или отношений- предикаторы, число имён предметов, к которым относится предикатор- его местность (одноместные,многоместные)

Формулами в языке КЛВ называютзначимые выражения. Пропозициональные переменные сами по себе уже являются (атомарными) формулами. Более сложные формулы получаются из атомарных с использованием связок.

Определение формулы. (1) Пропозициональные переменные являются формулами. (2) Если А и В – формулы, то ØА, А&В, АÚВ, А Ú В, АÉВ, АºВ – тоже формулы. (3) Ничто другое не является формулой.

Упражнение 1. Расставьте пропущенные скобки в следующих формулах:

а) p Ú Ø q & r É s & q Ú Ø p º Øs É q Ú r

б) p & q º r & s Ú q Ú Ø p É Øs Ú q & r

Переводить высказывания с обычного языка на естественный не трудно. Пусть, например, р означает «Иван-царевич любит Марью», q – «Марья любит Ивана-царевича», r – «Марья красивая», s – «Иван-царевич храбрый». Тогда переводом следующих высказываний будут формулы:

– «Иван-царевич храбрый и любит Марью» s & p

– «Неверно, что Марья некрасивая

или Иван-царевич ее не любит» Ø(Ør Ú Øp)

– «Если Марья красива, а Иван-царевич храбр,

то они любят друг друга» (r&s) É (p&q)

Семантика языка КЛВ основана на двух принципах:

1) Принцип бивалентности. Каждая пропозициональная переменная, замещающая собой простое предложение, может быть либо истинной, либо ложной. Истинность будем обозначать как 1, ложность – как 0.

2) Принцип композициональности. Истинностное значение сложной формулы есть функция от истинностных значений входящих в нее переменных.

Таким образом, каждая пропозициональная связка трактуется как истинностно-истинностная функция.

Язык и табличное построение КЛВ. Таблица истинности.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.