Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой...
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Топ:
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Генеалогическое древо Султанов Османской империи: Османские правители, вначале, будучи еще бейлербеями Анатолии, женились на дочерях византийских императоров...
Интересное:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Берегоукрепление оползневых склонов: На прибрежных склонах основной причиной развития оползневых процессов является подмыв водами рек естественных склонов...
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Дисциплины:
2017-09-10 | 408 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Отметим еще раз, что в «Началах» свойство единственности разложения на простые делители не сформулировано, но от этого сама арифметика «Начал» ничего не потеряла: то, что можно вывести из основной теоремы арифметики, получено там на основе теоремы Евклида. Легко могло бы быть получено и само свойство единственности. Сейчас мы это сделаем.
Пусть имеем два разложения на простые делители
. (1)
Докажем, что число множителей в обоих разложениях одинаково и после подходящей перестановки множителей Можно предполагать, что . Если делится на , то из определения простого числа вытекает, что они равны. Если , то по теореме Евклида произведение делится на . Продолжая и далее эти рассуждения, получим, что совпадает с одним из . Перестановкой множителей можно добиться того, что . После сокращения (1) на , имеем равенство и, повторяя предыдущий шаг, получим . После таких шагов справа останется 1, а слева простых множителей. Поэтому и однозначность установлена.
Кроме теоремы Евклида мы использовали только определение простого числа и закон сокращения: если и , то .
Чтобы окончательно доказать теорему Евклида, необходимо обосновать соотношение Безу, а для этого требуется предварительно развить теорию наибольшего общего делителя двух целых чисел. Именно для этой цели будут востребованы самые существенные свойства целых чисел.
От натуральных чисел перейдем к множеству целых чисел Z =
= {0, ±1, ±2,...} и наряду с натуральным простым р число –р также назовем простым. Разложению на простые подлежат все числа, отличные от 0 и ±1, например 6 = 2∙3 = 3∙2 = (–2)∙(–3) = (–3)∙(–2). Видим, что разложение единственно с точностью до перестановки множителей и их знаков.
|
Формулировка основной теоремы арифметики для целых чисел меняется незначительно: любое число, отличное от нуля и от ±1, можно разложить на простые множители, причем это разложение единственно с точностью до порядка множителей и их знаков.
Сначала рассмотрим алгори́тм Евкли́да – алгоритм для нахождения наибольшего общего делителя двух целых чисел или наибольшей общей меры двух однородных величин.
История
Древнегреческие математики называли этот алгоритм ἀνθυφαίρεσις или ἀνταναίρεσις – «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике Аристотеля. В «Началах» Евклида он описан дважды – в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков.
Историками математики (Цейтен и др.) было выдвинуто предположение, что именно с помощью алгоритма Евклида (процедуры последовательного взаимного вычитания) в древнегреческой математике впервые было открыто существование несоизмеримых величин (стороны и диагонали квадрата, или стороны и диагонали правильного пятиугольника). Впрочем, это предположение не имеет достаточных документальных подтверждений. Алгоритм для поиска наибольшего общего делителя двух натуральных чисел описан также в I книге древнекитайского трактата Математика в девяти книгах.
Ряд математиков средневекового Востока (Сабит ибн Курра, ал-Махани, Ибн ал-Хайсам, Омар Хайям) попытались построить на основе алгоритма Евклида теорию отношений, альтернативную по отношению теории отношений Евдокса, изложенной в V книге «Начал» Евклида. Согласно определению, предложенному этими авторами, четыре величины, первая ко второй и третья к четвёртой, имеют между собой одно и то же отношение, если при последовательном взаимном вычитании второй величины в обеих парах на каждом шаге будут получаться одни и те же неполные частные.
|
|
|
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!