
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Топ:
Теоретическая значимость работы: Описание теоретической значимости (ценности) результатов исследования должно присутствовать во введении...
История развития методов оптимизации: теорема Куна-Таккера, метод Лагранжа, роль выпуклости в оптимизации...
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Интересное:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Отметим еще раз, что в «Началах» свойство единственности разложения на простые делители не сформулировано, но от этого сама арифметика «Начал» ничего не потеряла: то, что можно вывести из основной теоремы арифметики, получено там на основе теоремы Евклида. Легко могло бы быть получено и само свойство единственности. Сейчас мы это сделаем.
Пусть имеем два разложения на простые делители
. (1)
Докажем, что число множителей в обоих разложениях одинаково и после подходящей перестановки множителей
Можно предполагать, что
. Если
делится на
, то из определения простого числа вытекает, что они равны. Если
, то по теореме Евклида произведение
делится на
. Продолжая и далее эти рассуждения, получим, что
совпадает с одним из
. Перестановкой множителей можно добиться того, что
. После сокращения (1) на
, имеем равенство
и, повторяя предыдущий шаг, получим
. После
таких шагов справа останется 1, а слева
простых множителей. Поэтому
и однозначность установлена.
Кроме теоремы Евклида мы использовали только определение простого числа и закон сокращения: если и
, то
.
Чтобы окончательно доказать теорему Евклида, необходимо обосновать соотношение Безу, а для этого требуется предварительно развить теорию наибольшего общего делителя двух целых чисел. Именно для этой цели будут востребованы самые существенные свойства целых чисел.
От натуральных чисел перейдем к множеству целых чисел Z =
= {0, ±1, ±2,...} и наряду с натуральным простым р число –р также назовем простым. Разложению на простые подлежат все числа, отличные от 0 и ±1, например 6 = 2∙3 = 3∙2 = (–2)∙(–3) = (–3)∙(–2). Видим, что разложение единственно с точностью до перестановки множителей и их знаков.
Формулировка основной теоремы арифметики для целых чисел меняется незначительно: любое число, отличное от нуля и от ±1, можно разложить на простые множители, причем это разложение единственно с точностью до порядка множителей и их знаков.
Сначала рассмотрим алгори́тм Евкли́да – алгоритм для нахождения наибольшего общего делителя двух целых чисел или наибольшей общей меры двух однородных величин.
История
Древнегреческие математики называли этот алгоритм ἀνθυφαίρεσις или ἀνταναίρεσις – «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике Аристотеля. В «Началах» Евклида он описан дважды – в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков.
Историками математики (Цейтен и др.) было выдвинуто предположение, что именно с помощью алгоритма Евклида (процедуры последовательного взаимного вычитания) в древнегреческой математике впервые было открыто существование несоизмеримых величин (стороны и диагонали квадрата, или стороны и диагонали правильного пятиугольника). Впрочем, это предположение не имеет достаточных документальных подтверждений. Алгоритм для поиска наибольшего общего делителя двух натуральных чисел описан также в I книге древнекитайского трактата Математика в девяти книгах.
Ряд математиков средневекового Востока (Сабит ибн Курра, ал-Махани, Ибн ал-Хайсам, Омар Хайям) попытались построить на основе алгоритма Евклида теорию отношений, альтернативную по отношению теории отношений Евдокса, изложенной в V книге «Начал» Евклида. Согласно определению, предложенному этими авторами, четыре величины, первая ко второй и третья к четвёртой, имеют между собой одно и то же отношение, если при последовательном взаимном вычитании второй величины в обеих парах на каждом шаге будут получаться одни и те же неполные частные.
|
|
Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!