История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Топ:
Основы обеспечения единства измерений: Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение...
Марксистская теория происхождения государства: По мнению Маркса и Энгельса, в основе развития общества, происходящих в нем изменений лежит...
Установка замедленного коксования: Чем выше температура и ниже давление, тем место разрыва углеродной цепи всё больше смещается к её концу и значительно возрастает...
Интересное:
Распространение рака на другие отдаленные от желудка органы: Характерных симптомов рака желудка не существует. Выраженные симптомы появляются, когда опухоль...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Знать формулы моментов инерции простейших сечений, способы вычисления моментов инерции при параллельном переносе осей.
Уметь определять полярные и главные центральные моменты инерции для сечений, имеющих ось симметрии.
Моменты инерции простейших сечений

Прямоугольник и квадрат (рис. П7.1)
Осевые:


Круг и кольцо (рис. П7.2)

где d — диаметр круга и наружный диаметр кольца;
dBH — внутренний диаметр кольца; с = dBH/d
Моменты инерции относительно параллельных осей (рис. П7.3)

где Jx — момент инерции относительно оси xx,
JXo — момент инерции относительно оси х0х0;
А — площадь сечения; а — расстояние между осями.
Рекомендации для решения задач расчетно-графической работы
1. Момент инерции сложной фигуры является суммой моментов инерции частей, на которые ее разбивают. Разбить заданную фигуру на простейшие части, для каждой определить главные центральные моменты инерции по известным формулам.
2. Моменты инерции вырезов и отверстий можно представить отрицательными величинами.
3. Заданные сечения симметричны, главные центральные оси совпадают с осями симметрии составного сечения.
4. Моменты инерции частей, чьи главные центральные оси не совпадают с главными центральными осями сечения в целом, пересчитывают с помощью формулы для моментов инерции относительно параллельных осей. Расстояние между параллельными осями определить по чертежу.
5. При выполнении задания 2 главные центральные моменты инерции отдельных стандартных профилей определить по таблицам ГОСТ (Приложение 1).
Для использованных в составных сечениях полос моменты инерции определить по известной формуле для прямоугольника.
Расчетно-графическая работа №8. Определение геометрических характеристик плоских сечений.
Геометрические характеристики плоских сечений.
Задание 1. Вычислить главные центральные моменты инерции сечений, представленных на схемах. При расчетах воспользоваться данными таблицы, выбрав необходимые величины (лекция 25, пример 1).

Задание 2. Вычислить главные центральные моменты инерции составных сечений. При расчете воспользоваться данными таблицы, выбрав необходимые величины. Геометрические характеристики стали горячекатаной выбрать по ГОСТ 8239-89 (Балки двутавровые) и ГОСТ 8240-89 (Швеллеры) (лекция 25, пример 2).

При защите работы ответить на вопросы тестового задания.
Тема 2.4. Геометрические характеристики плоских сечений
ЛЕКЦИЯ 26
Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
Иметь представление о деформациях при кручении, о внутренних силовых факторах при кручении.
Уметь строить эпюры крутящих моментов.
Деформации при кручении
Кручение круглого бруса происходит при нагружении его парами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ, называемый углом сдвига (угол поворота образующей). Поперечные сечения разворачиваются на угол ip, называемый углом закручивания (угол поворота сечения, рис. 26.1).
Длина бруса и размеры поперечного сечения при кручении не изменяются.
Связь между угловыми деформациями определяется соотношением

l — длина бруса; R — радиус сечения.
Длина бруса значительно больше радиуса сечения, следовательно,
φ >> γ.
Угловые деформации при кручении рассчитываются в радианах.
Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпендикулярное продольной оси, после деформации остается плоским и перпендикулярным продольной оси.
2. Радиус, проведенный из центра поперечного сечения бруса, после деформации остается прямой линией (не искривляется).
3. Расстояние между поперечными сечениями после деформации не меняется. Ось бруса не искривляется, диаметры поперечных сечений не меняются.
|
|
|
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!