Часть 5: Электрические заряды Солнца и Земли — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Часть 5: Электрические заряды Солнца и Земли

2017-06-25 807
Часть 5: Электрические заряды Солнца и Земли 0.00 из 5.00 0 оценок
Заказать работу

Как уже отмечалось ранее, большая часть Вселенной состоит из плазмы. Это также относится и к Солнечной системе. Таким образом, в такой ионизированной среде электрические заряды присутствуют почти повсюду. В этой главе мы попытаемся разобраться с относительными электрическими зарядами ядер, поверхностей и двойных прослоек различных небесных тел (комет, лун, планет, звёзд и галактик).

Нужно понимать разницу между «относительными» и «абсолютными зарядами». Другими словами, когда мы говорим, что А более позитивно заряжено, чем B, не обязательно означает, что заряд А является абсолютно позитивным, даже в масштабах Вселенной. Это говорит только о том, что заряд А позитивнее заряда B, или менее негативно заряжен, чем В, с которым он взаимодействует.

В конечном счёте, дело именно в этих относительных зарядах, потому что именно их разница приводит к возникновению электрических токов независимо от их абсолютного (позитивного или негативного) заряда. Так как наша задача состоит в том, чтобы лучше понять различие между зарядами поверхности, двойной прослойки и ядра, мы сфокусируемся на относительных зарядах.

Как правило, большинство небесных тел имеют в целом негативный заряд, [31] и эти тела обычно окружены более негативно заряженной двойной прослойкой, которая, в свою очередь, окружена ещё более негативно заряженной Галактикой или межзвёздной плазмой. Применив эту концепцию к Солнцу, получается, что в нашей Солнечной системе Солнце — самое позитивно заряженное тело, относительно говоря, хотя его абсолютный заряд негативен, но менее негативен, чем заряд планет, комет, гелиосферы и окружающей его Галактики. Следовательно, планеты и кометы могут рассматриваться как негативно заряженные по сравнению с Солнцем тела.

На уровне Солнца относительные электрические заряды выглядят следующим образом: ядро Солнца более позитивно, чем его поверхность. Ядро и поверхность Солнца более позитивны, чем его «внешняя оболочка» (гелиосфера), которая охватывает Землю и другие планеты Солнечной системы. Солнце с его гелиосферой более позитивны, чем окружающая их галактическая плазма.

Касательно Земли мы можем сказать, что подобно Солнцу её ядро позитивнее поверхности. Ядро и поверхность Земли негативнее, чем её «оболочка» (ионосфера). Земля и её ионосфера заряжены более негативно, чем окружающая их плазма (гелиосферная плазма).

Рис. 14 аналогичен рис. 11, за исключением добавленных относительных электрических зарядов и двойных прослоек Земли и Солнца.

Рисунок 14 Относительные электрические заряды между Солнцем и Землей и внутри них (обратите внимание, что тело может быть представлено как позитивно заряженное, в то время как его абсолютный заряд негативен) © Sott.net

В обоих случаях электрические заряды распространяются градиентно. Например, в случае Солнца: перемещаясь от ядра к поверхности, затем к гелиосфере, гелиопаузе и галактическому пространству, заряд становится более негативным:

Электрический потенциал Солнца -> электрический потенциал гелиосферы -> электрический потенциал галактического пространства.

В случае Земли заряд, напротив, становится всё более позитивным при удалении от ядра:

Электрический потенциал Земли <- электрический потенциал ионосферы <- электрический потенциал окружающего пространства.

Заметьте всё же явное несоответствие: Солнце проявляет (относительно) негативный заряд на поверхности, в то время как общий заряд (относительно) позитивен.

Солнце работает как генератор. На солнечной поверхности позитивно заряженные протоны уносятся «солнечными ветрами»[32] в направлении внешнего слоя гелиосферы, в то время как электроны возвращаются и накапливаются на поверхности Солнца. Эти два фактора объясняют электрическую негативность поверхности Солнца относительно его ядра.

В противоположность Солнцу, Земля не работает как генератор. Она получает энергию от Солнца, которое сохраняет позитивный заряд её ионосферы. Так как заряды противоположной полярности притягиваются друг к другу, позитивная ионосфера притягивает электроны с поверхности Земли, отсюда и негативность электрического потенциала поверхности Земли относительно её ядра.

Вышеописанные локальные заряды (поверхности и ядра) являются средними значениями (средний заряд поверхности, средний заряд ядра). Однако ядра и поверхности небесных тел не проявляют подобных электрических зарядов повсеместно. Это означает, например, что хотя поверхность Земли негативнее её атмосферы, в некоторых локальных регионах поверхность может быть более позитивной. Это может приводить к различным типам явлений электрической разрядки.

Молнии — это локальный феномен балансировки зарядов. Эти локальные дисбалансы в зарядах являются причинами того, почему мы видим молнии от облаков к поверхности земли (наиболее преобладающий вид, когда земная поверхность позитивнее облаков), но так же и молнии от поверхности к облакам (когда она негативнее, чем облака), а также молнии между облаками (когда два облака несут сильно разнящиеся электрические потенциалы).

Рисунок 15 Межоблачная молния, балансирующая заряд между двумя областями атмосферы. © Wikipedia

Эти внезапные и массивные электрические разряды позволяют сбалансировать заряд между двумя областями, проявляющими сильные негативные и/или позитивные локальные заряды. Позже мы обсудим это подробнее. [33]

Возвращаясь к аналогии с плазменным шаром, отметим, что когда вы касаетесь поверхности шара, между точкой касания и центральным электродом появляется тонкая плазменная нить. Подобным образом разрядку провоцирует муха, пролетающая между проводами лампы от мух. В обоих случаях инородный объект (палец или муха) увеличивает локальную проводимость и создаёт путь наименьшего сопротивления, тем самым вызывая разрядку.

Несмотря на то, что двойная прослойка действует как электрический изолятор, ослабляя разряд между телом и окружающей плазмой, идеальным изолятором она не является. Как и в любом виде конденсатора, электрический ток всё ещё может протекать через изолятор либо в очень слабой форме, либо с более интенсивными разрядами, отсюда и вытекают три вида разряда плазмы (тёмный, тлеющий и дуговой), описанные ранее. Присутствие заряженного объекта (как, например, кометы, планеты и т.д.) в двойной прослойке небесного тела является главной причиной массивных разрядок. В дальнейшем мы рассмотрим это подробнее.

* * *


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.