Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Часть 7: Межзвездная плазма. Электрический ток в плазме

2017-06-25 584
Часть 7: Межзвездная плазма. Электрический ток в плазме 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Рисунок 19 Ток Биркеланда, протекающий через "пустое" межзвёздное пространство

Межзвездная плазма

До недавнего времени космос считался полностью пустым, идеальным вакуумом. Этой точки зрения всё ещё придерживаются в широких научных кругах, хотя это и не совсем верно. Космос не пустой. Он заполнен плазмой. Эта космическая плазма состоит главным образом из очень лёгких молекул: ионов гелия, водорода и электронов, и их концентрация составляет приблизительно одну (ионизированную) частицу на каждый кубический сантиметр. [43]Для сравнения, концентрация воздуха в атмосфере составляет приблизительно 1013 частиц на кубический сантиметр.

На рис. 19 изображён ток Биркеланда, пересекающий световые годы «пустого» космоса и демонстрирующий тем самым тот факт, что очень низкая концентрация космической плазмы не препятствует возникновению явлений электрической природы. Помните эксперимент Милликена и то, как электромагнитная сила, созданная одним единственным электроном, повлияла на большую часть окружающего его пространства? В космических масштабах электрические свойства плазмы позволяют электрическим токам течь между небесными телами, поскольку плазма является очень хорошим проводником. Это позволяет существовать электрическим взаимодействиям между поверхностью небесного тела и внешним слоем его двойной прослойки, а также взаимодействиям внутри неё.

Согласно Хэннесу Альфвену (Hannes Alfven) и Джеймсу Маккэнни (James McCanney), плазма в космосе электрически практически нейтральна или лишь немного позитивна. Однако в научных кругах имеются некоторые разногласия по поводу электрического заряда (полярности) солнечного ветра. В то время как официальная теория утверждает, что солнечный ветер электрически нейтрален, британский математик и геофизик Сидни Чепмен (Sydney Chapman) заявил ещё в 1930 г., что солнечный ветер состоит из положительно заряженной плазмы. Совсем недавно физик Луис Альварес (Luis Alvarez)[44] утверждал, что солнечный ветер проявляет, в общем, положительный электрический заряд. [45]Жан Мартен Менье[46] (Jean Martin Meunier) также утверждает, что солнечный ветер не является электрически нейтральным и объясняет это следующим образом:

Солнечный ветер как таковой имеет положительный заряд; он состоит из гораздо большего количества протонов h+, чем электронов. Почему? Потому что электроны выбрасываются в галактическое пространство ультрафиолетовым, гамма- и рентгеновским излучением Солнца со скоростью 10 000 - 300 000 км/с (эффект Комптона). Следствие: солнечный ветер (скоростью 300 - 900 км/с) является потоком протонов, стремящийся восполнить потерю электронов. [47]

Электрический ток в плазме

Помните плазменный шар и светящиеся нити, соединяющие центральный электрод и внешний пластиковый слой шара? Это типичный разряд плазменного тока. Но почему плазма принимает такую нитевидную форму? Чтобы понять этот феномен, мы должны вспомнить курс физики средней школы, а точнее, урок об электромагнетизме и о том, как электромагнитное поле генерируется электрическим током.

Рисунок 20 Магнитное поле, генерируемое электрическим током, текущим по проводу. © physick.wikispaces.com

На рис. 20 мы видим, что электрический ток (красные стрелки) в проводе (синего и желтого цвета) производит перпендикулярные ему магнитные витки (чёрные круговые стрелки). Подобным образом также и ток в плазме генерирует перпендикулярные ему магнитные витки. Однако, в отличие от твёрдого медного провода, плазма в большинстве случаев находится во флюидной форме. По этой причине магнитные витки придают плазмовым разрядам форму нитей (рис. 21). Таким образом, магнитное поле придает форму электрическому току, генерирующему это самое поле. С этой точки зрения, электрический ток в плазме создаёт магнитное поле, которое служит для его направления или «стягивания».[48] Другими словами, происходит сжатие проводящей электрической нити магнитными силами. Эти нитевидные плазменные токи также являются токами Биркеланда. [49]

Рисунок 21 Линии магнитного поля "стягивают" ток Биркеланда в длинную нить (пурпурный цилиндр)

Теперь, когда мы знаем, как ведёт себя единичная нить плазменного тока, или ток Биркеланда, давайте посмотрим, что происходит в случае двух расположенных рядом плазменных нитей, как показано на рис. 22. Поначалу магнитные поля, генерируемые каждой нитью, притягиваются друг к другу и стремятся к слиянию. Эти электромагнитные взаимодействия заставляют нити сближаться друг с другом (в верхней части рисунка). Затем вращающиеся магнитные поля заставляют нити обвиваться одна вокруг другой (в нижней части). Это называется плазменным вихрем.

Рисунок 22 Электромагнитное взаимодействие приводит к сближению и скручиванию пары спирально формирующихся нитей, также известное как "плазменный вихрь".© Thunderbolts.info

Заметьте, что сначала две нити притягиваются друг к другу магнитными силами, но как только они достаточно сблизились, образуется сила отталкивания, которая не даёт им сблизиться. В плазме происходит притяжение частиц друг к другу силой Лоренца (см. следующую главу), что приводит к её сжатию. Но затем сжатие прерывается увеличением давления газа в плазме. Притяжение и отталкивание действуют совместно, создавая очень стабильную структуру, в которой нити держатся на определенном расстоянии друг от друга. Они и не сливаются, и не разъединяются.

Запомните эти скрученные формы и вращающиеся движения, поскольку в дальнейших главах мы столкнёмся с многочисленными случаями их возникновения в природе (например, вихри, ураганы, формы галактик, хвосты комет, солнечные ветры, вращение звёзд и планет и т.д.). К примеру, Энтони Перрат (Anthony Peratt) [50]использовал эффект скручивания плазменных нитей, наблюдаемый в лабораторных условиях, для объяснения процесса формирования галактик (рис. 23).

Рисунок 23 Симуляция формирования галактики с помощью суперкомпьютера
Энтони Перратом, основывающаяся на взаимодействии заряженных частиц. © Peratt

* * *


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.