Воздействие влияющих факторов на датчики давления — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Воздействие влияющих факторов на датчики давления

2017-06-09 904
Воздействие влияющих факторов на датчики давления 0.00 из 5.00 0 оценок
Заказать работу

 
 

В большинстве случаев измерение давления происходит в условиях интенсивного воздействия на датчики различных влияющих факторов (ВФ) (рис. 4.4). Влияющие факторы, действующие на датчик ДД, могут быть разделены на три условные группы [52]. Первая группа – ВФ, определяемые видом контролируемых энергетических агрегатов и их режимом работы: хв – виброускорения; xу’ – ударные ускорения; хл – линейные ускорения; ха – акустические шумы; хт.р – температура рабочей среды; хх’ – химические свойства среды и др. Вторая группа – внешние ВФ, определяемые условиями эксплуатации испытуемых или контролируемых энергетических агрегатов: хт.о – температура окружающей среды; хд – давление;
хвл – влажность; хс’ – солнечная радиация и др. Третья группа – это факторы, определяемые эксплуатационными особенностями измерительного комплекса: хтр – соединительные трубопроводы (материал, длина, диаметр); хк – параметры кабельного соединения (длина, емкость, активное сопротивление и др.); хп’ – вид и колебания напряжения питания; хф’ – физические свойства среды (газ, жидкость, тиксотропная жидкость, многофазная среда и др.).

Анализ условий работы датчиков давления, используемых при испытании энергетических агрегатов, например, авиационных двигателей, показал, что наибольшее влияние на погрешность измерения оказывают температура рабочей и окружающей среды, циклическая температура, вибрация и ударные ускорения, акустические поля и давление окружающей среды.

Характерным для датчиков давления является то, что они работают не только при стационарном воздействии температуры среды, но и в условиях перепадов, достигающих сотен градусов. Изменение начального уровня выходного сигнала и коэффициента преобразования при температурных воздействиях обусловлено температурной зависимостью характеристик материалов, используемых в датчиках, а также изменением геометрических размеров упругих элементов и деталей передаточных механизмов.

Воздействие вибрационных ускорений характеризуется «размывом» нулевого уровня выходного сигнала, причем амплитуда колебаний увеличивается при резонансе элементов конструкции датчика. У многих датчиков при воздействии виброускорений изменяется коэффициент преобразования. Линейное ускорение может вызвать смещение нулевого уровня выходного сигнала из-за смещения отдельных деталей датчика друг относительно друга под влиянием сил инерции. При жидкостном заполнении предмембранных полостей и мембранных коробок появляется дополнительное усилие на упругие элементы так же за счет сил инерции.

Воздействие ударных ускорений проявляется в импульсном изменении нулевого уровня выходного сигнала (рис. 4.5). При измерении относительно медленноменяющихся давлений в случае, когда реакция датчика на воздействие ударных ускорений достаточно хорошо изучена, можно при обработке не принимать во внимание импульс, обусловленный ударом, если по времени его появление совпадает с ударным воздействием [53].

Для датчиков пульсирующих и импульсных давлений существенным ВФ может оказаться статическое давление, которым предварительно нагружается ЧЭ датчика. В частности, у некоторых типов индуктивных дат
 
 

чиков наблюдается увеличение коэффициентов преобразования переменного давления, а у пьезоэлектрических датчиков давления чувствительность уменьшается при увеличении статического давления.

Существенным для мембранных «ввертных» датчиков давления является влияние на частоту собственных колебаний присоединенных объемов жидкости. Датчики этой конструкции с мембраной, выполненной «заподлицо» с торцом корпуса, ввертываются или ввариваются в отверстия в трубопроводах или емкостях, находящихся под давлением, и практически не имеют дополнительных объемов. Однако при прямом контакте мембраны с жидкостью, плотностью которой нельзя пренебречь, собственная частота f 0 колебаний мембраны ощутимо уменьшается. В этом случае при определении f 0 необходимо вводить поправочный множитель [54]

(4.6)

где ρ 1 плотность жидкости; ρ 2 плотность материала мембраны; R М – радиус мембраны; δ – толщина мембраны.

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.006 с.