Системы уравнений, эквивалентные схемы, измерение параметров — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Системы уравнений, эквивалентные схемы, измерение параметров

2022-11-24 25
Системы уравнений, эквивалентные схемы, измерение параметров 0.00 из 5.00 0 оценок
Заказать работу

Вопрос №12

Последовательное соединение резисторов. При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго — с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит один и тот же ток I.

Если принять, что в источнике Ro = 0, то для трех последовательно соединенных резисторов согласно второму закону Кирхгофа можно написать:

E = IR1 + IR2 + IR3 = I(R1 + R2 + R3) = IRэк

где Rэк = R1 + R2 + R3.

Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов. Так как напряжения на отдельных участках цепи согласно закону Ома: U1=IR1; U2 = IR2, U3 = IRз и в данном случае E = U, то для рассматриваемой цепи

U = U1 + U2 +U3

Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Из указанных формул следует также, что напряжения распределяются между последовательно соединенными резисторами пропорционально их сопротивлениям:

U1: U2: U3 = R1: R2: R3

т. е. чем больше сопротивление какого-либо резистора в последовательной цепи, тем больше приложенное к нему напряжение.

Параллельное соединение резисторов. При параллельном соединении нескольких резисторов, они включаются между двумя точками электрической цепи, образуя параллельные ветви.

При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома:

I1=U/R1; I2=U/R2; I3=U/R3.

Ток в неразветвленной части цепи согласно первому закону Кирхгофа I = I1+I2+I3, или

I = U / R1 + U / R2 + U / R3 = U (1/R1 + 1/R2 + 1/R3) = U / Rэк

1/Rэк = 1/R1 + 1/R2 + 1/R3

Вводя в формулу вместо значений 1/Rэк, 1/R1, 1/R2 и 1/R3 соответствующие проводимости Gэк, G1, G2 и G3, получим: эквивалентная проводимость параллельной цепи равна сумме проводимостей параллельно соединенных резисторов:

Gэк = G1+ G2 +G3

I1: I2: I3 = 1/R1: 1/R2: 1/R3 = G1 + G2 + G3

Rэк=R1R2/(R1+R2)

при трех параллельно включенных резисторах

Rэк=R1R2R3/(R1R2+R2R3+R1R3)

Смешанное соединение резисторов. Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно. Например, в схеме имеются два последовательно включенных резистора сопротивлениями R1 и R2, параллельно им включен резистор сопротивлением Rз, а резистор сопротивлением R4 включен последовательно с группой резисторов сопротивлениями R1, R2 и R3. Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь последовательными этапами преобразовывают в простейшую. Например, для данной схемы вначале определяют эквивалентное сопротивление R12 последовательно включенных резисторов с сопротивлениями R1 и R2: R12 = R1 + R2. При этом данная схема заменяется эквивалентной. Затем определяют эквивалентное сопротивление R123 параллельно включенных сопротивлений и R3 по формуле:

R123=R12R3/(R12+R3)=(R1+R2)R3/(R1+R2+R3).

При этом полученная схема заменяется эквивалентной. После этого находят эквивалентное сопротивление всей цепи суммированием сопротивления R123 и последовательно включенного с ним сопротивления R4:

Rэк = R123 + R4 = (R1 + R2) R3 / (R1 + R2 + R3) + R4

Вопрос №13

Для ветви, состоящей только из резисторов и подключенной к узлам электрической цепи a и b (см. рис.) закон Ома имеет вид:

Для ветви содержащей резисторы и источники электрической энергии закон Ома принимает следующий вид:

Первый закон Кирхгофа

Данный закон применим к любому узлу электрической цепи.

Первый закон Кирхгофа - алгебраическая сумма всех токов, сходящихся в узле равна нулю.

Токи, наравленные к узлу, условно принимаются положительными, а направленные от него - отрицательными (или наоборот). На рисунке ниже изображен пример применения первого закона Кирхгофа для узла, в котором сходится 5 ветвей.

Более понятна для понимания другая формулировка первого закона Кирхгофа: сумма токов, направленных к узлу электрической цепи равна сумме токов, направленных от него.

Второй закон Кирхгофа

Данный закон применим к любому замкнутому контуру электрической цепи.

Второй закон Кирхгофа - в любом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений в отдельных сопротивлениях.

Вопрос №14

Метод наложения — метод расчёта электрических цепей, основанный на предположении, что электрический ток в каждой из ветвей электрической цепи при всех включённых генераторах равен сумме токов в этой же ветви, полученных при включении каждого из генераторов по очереди и отключении остальных генераторов (только в линейных цепях).

Метод наложения используется как для расчёта цепей постоянного тока, так и для расчёта цепей переменного тока.

Пример

Найти ток методом наложения в цепи, показанной на рисунке. , , .

При отключённом генераторе 2 ток найдём по формуле:

.

При отключённом источнике 1 ток будет

,

а ток будет

.

Тогда ток при обоих включённых источниках будет равен сумме токов и :

.

В задаче за положительные направления токов и приняты направления, совпадающие с направлением, показанным на рисунке для тока . То же самое для тока

Вопрос №15

Пример расчёта сложной цепи методом контурных токов

В цепи, изображённой на рисунке 1, рассчитать все токи методом контурных токов. Параметры цепи: Е1 = 24 В, Е2 = 12 В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Рис. 1. Схема электрической цепи для примера расчета по методу контурных токов

Решение. Для расчета сложной цепи этим методом достаточно составить два уравнения, по числу независимых контуров. Контурные токи направляем по часовой стрелке и обозначаем I11 и I22 (см. рисунок 1).

По второму закону Кирхгофа относительно контурных токов составляем уравнения:

Решаем систему и получаем контурные токи I11 = I22 = 3 А.

Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. На рисунке 1 такими токами являются I1, I2, I3. Направление у этих токов одинаковое – вертикально вверх.

Переходим от контурных токов к реальным. В первой ветви протекает только один контурный ток I11. Направление его совпадает с направлением реального тока ветви. В таком случае реальный ток I1 + I11 = 3 А.

Реальный ток второй ветви формируется двумя контурными I11 и I22. Ток I22 совпадает по направлению с реальным, а I11 направлен навстречу реальному. В результате I2 = I22 - I11 = 3 - 3 = 0А.

В третьей ветви протекает только контурный ток I22. Направление этого тока противоположно направлению реального, поэтому для I3 можно записать I3 = -I22 = -3А.

Вопрос №16

Метод узловы́х потенциалов — метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Пример системы уравнений

На схеме (рис. 2) четыре узла. Потенциал в узле 0 принят равным нулю (φ0 = 0). Записываем уравнения для узлов 1, 2 и 3:

где проводимости рёбер равны

Вопрос №17

Решение задач Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Задача 1. Для цепи определить эквивалентное сопротивление относительно входных зажимов a−g, если известно: R 1 = R 2 = 0,5 Ом, R 3 = 8 Ом, R 4 = R 5 = 1 Ом, R 6 = 12 Ом, R 7 = 15 Ом, R 8 = 2 Ом, R 9 = 10 Ом, R 10= 20 Ом.

Решение

Начнем эквивалентные преобразования схемы с ветви наиболее удаленной от источника, т.е. от зажимов a−g:

 

Вопрос №18

Напряжённость магни́тногопо́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В Международной системе единиц (СИ): где — магнитная постоянная.

Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе.

Магни́тнаяинду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Магни́тныйпото́к —физическая величина, равная плотности потока силовых линий, проходящих через бесконечно малую площадку dS. поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

Вопрос №19

Магнитное поле прямолинейного проводника с током. Правило Буравчика.

Магнитное поле проводника с током. При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 1). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
Направление магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику. Направление магнитных силовых линий можно определить по правилу буравчика. Его формулируют следующим образом. Если поступательное движение буравчика 1 (рис. 2, а) совместить с направлением тока 2 в проводнике 3, то вращение его рукоятки укажет направление силовых линий 4 магнитного поля вокруг проводника.

 

Рис.1 Магнитное поле вокруг прямолинейного проводника с током. Рис. 2определение направления магнитного поля по правилу Буравчика.

Вопрос №20.

Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой – к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса – северный и южный.

Вокруг катушки с током имеется магнитное поле. Его, как и поле прямого проводника, можно обнаружить при помощи опилок. Магнитные линии магнитного поля катушки с током являются также замкнутыми.

Магнитное поле Земли или геомагнитное поле — магнитное поле, генерируемое внутриземными источниками.

ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ПРОВОДНИК С ТОКОМ


Магнитное поле действует с некоторой силой на любой проводник с током,
находящийся в нем.
Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.

 

Направление движения проводника
зависит от направления тока в проводнике и от расположения полюсов магнита.

Правила левой руки

Первое правило левой руки

Если расположить ладонь левой руки так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца направлены по току, то отставленный на 90° большой палец укажет направление силы, действующей на проводник.

Второе правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца или Ампера».

Вопрос №21

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электродвижущая сила.

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где — поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца).

27)

Резистор в цепи синусоидального тока

 

Пусть резистор с сопротивлением R подключен к источнику синусоидального напряжения u=UmSinωt (рис.2.5,а).

В такой цепи в любой момент времени напряжение источника компенсируетсяпадением напряжения на резисторе u=iR, откуда,

где Im=Um/R

Рисунок 2.5 – График резистора в цепи синусоидального тока

Из последнего выражения видно, что при синусоидальном напряжении ток в цепи также синусоидален. Ток в цепи с резистором совпадает по фазе с приложенным напряжением. Такой ток принято называть активным, а нагрузка, в которой ток совпадает по фазе с напряжением, называется активной нагрузкой.

Мощность, потребляемая нагрузкой в разные моменты времени, неодинакова

Как видно из графика, представленного на рисунке 2.5,б, мгновенная мощность в цепи с резистором периодически изменяется от нуля до максимума. При этом знак мощности остается положительным. Это означает, что в активной нагрузке происходит процесс необратимого преобразования электрической энергии.

Мощность цепи переменного тока принято оценивать по среднему за период значению, которое называют активной мощностью P.

Активная мощность измеряется в ваттах [Вт].

Поверхностный эффект и эффект близости  

 

 

34)

Ток, напряжение и полное сопротивление. При последовательном включении в цепь переменного тока активного R, индуктивного XL и емкостного Хс сопротивлений (рис. 192, а) к ним приложены напряжения: активное ua=iR, индуктивное uL = iXL и емкостное uc=iXc. Мгновенное значение напряжения и, приложенного к данной цепи, согласно второму закону Кирхгофа равно алгебраической сумме напряжений:

u = ua + uL + uc

Но для действующих значений эта формула неприменима, так как между всеми указанными напряжениями имеется сдвиг по фазе (амплитудные значения этих напряжений не совпадают по

Рис. 193. Треугольник со противлении

времени). Чтобы учесть сдвиг по фазе между напряжениями uа, uL и uc. осуществляют сложение их векторов:

? =?a +?L +?C

Для этого строят векторную диаграмму, на которой откладывают в определенном масштабе векторы тока? и напряжений?a,?L,?C. Из этих напряжений первое совпадает по фазе с током, второе опережает его на 90°. Векторная диаграмма (рис. 192,б) построена для цепи, в которой индуктивное сопротивление XL больше емкостного Xc (вектор?L, больше вектора?C.), а рис. 192, в — для цепи, в которой XL меньше Хс (вектор?L, меньше вектора?C). Вектор напряжения U является замыкающим — он сдвинут по фазе относительно вектора тока? на некоторый угол?. Напряжение U (действующее значение) может быть определено из треугольника ЛВС по теореме Пифагора:

U =?(U2a + (UL – Uc)2)

Таким образом, из-за наличия угла сдвига фаз? напряжение U всегда меньше алгебраической суммы Ua + UL + UC. Разность UL – UC = Up называется реактивной составляющей напряжения.

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

В цепи, содержащей все три вида сопротивления, ток i и напряжение и оказываются сдвинутыми по фазе на некоторый угол ср (рис. 192, г), при этом 0<?<90°.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения Ua = IR; UL = l?L и UC=I/(?C), то будем иметь: U =?((IR)2+ [I?L-I/ (?С) ]2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / (? (R2+ [?L-1 / (?С) ]2)) = U / Z (72)

где Z =? (R2+ [?L-1 / (?С) ]2) =? (R2+ (XL – Xc)2)

Величину Z называют полным сопротивлением цепи, оно измеряется в омах. Разность?L — l/(?C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z =? (R2+ X2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз? определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin? = X / Z; cos? = R / Z; tg? = X / R

35)

 

Энергетический процесс

· Мгновенная, активная, реактивная и полная мощности

1. Мгновенная мощность

Мгновенная мощность PR = uRi содержит две составляющие: постоянную и переменную, которая изменяется по закону косинуса с частотой

2. Активная мощность

Среднее за период значение мгновенной мощности (называется активной мощностью) равно:

3. Реактивная мощность

4. Полная мощность

Полная мощность определяется по формуле: лишь в том случае, если спектры тока и напряжения совпадают. При несовпадении спектров этих функций:

, где T – мощность искажения, обусловленная несовпадением спектров тока и напряжения.

· Треугольник мощностей

Треугольник мощностей – это графическое изображение активной, реактивной и полной мощностей в цепи переменного тока.

Треугольник мощностей получается из соотношения Р2 + Q2 = S2

36)-

 

37)

38) - 39)

 Электрическая цепь синусоидального тока с емкостью

В экспериментальной установке включим в цепь набор конденсаторов (рис. 1, а). Считаем источники и конденсатор идеальными.Емкость составляет 106 мкФ. Приборы показывают те же самые показания, что и для установки с индуктивностью. Только изменился знак реактивной мощности. Если по аналогии с активным сопротивлением выразить сопротивление емкостей ХС, то оно тоже составит 30 Ом.

 

Рис. 1.

Для постоянного тока оно бесконечно большое. В цепи с емкостью имеем два тока: в проводах, соединяющих конденсатор и емкость, - ток проводимости, в диэлектрике между пластинами конденсатора - такой же емкостной ток (ток смещения). Поскольку q = CU, а ток , то чем больше C, Um и скорость изменения заряда q (которая зависит от частоты ), тем больший по амплитуде будет переменный ток i(t):

Выразим i(t) через U(t). Примем начальную фазу , т.е. . Тогда:

Когда ,

Выпишем отдельно полученные тригонометрические функции:

где

или для действующих значений,

,

где множитель - модуль емкостной проводимости BC (Ом-1)

Обратная ей величина - модуль емкостного сопротивления ХС (Ом):

которое для установки (рис. 1, а) составляет 120 В / 40 А = 30 Ом. Те же 30 Ом получим из указанной выше формулы, подставив = 314 и С = 106 мкФ. Заменим временные функции символическими векторами:

Вектор (рис. 1, в) совпадает по направлению с действительной осью, опережает напряжение на угол . Отношение к дает комплексное (в данном случае емкостное - jXC) сопротивление:

,

поскольку . Емкостное сопротивление обратно пропорционально емкости С и частоте . Мгновенная мощность равняется

Активная мощность - нулевое среднее значение заштрихованной на рис. 1, в синусоиде p(t) удвоенной частоты: в первую четверть периода зарядный ток и напряжение на емкости совпадают по направлению, электрическое поле увеличивает энергию CU2 / 2, забирая ее у источника, емкость в режиме потребителя; во вторую четверть ток разряда емкости изменяет свое направление, энергия конденсатора уменьшается, потому что конденсатор разряжается на источник, который перешел сам в режим потребителя; далее происходит перезарядка конденсатора напряжением источника противоположного знака и, в последнюю четверть, - разрядка перезаряженного конденсатора. Прибор, измеряющий реактивную мощность Q, показывает QC = - 480 (ВАР). Дело в том, что прибор измеряет не просто амплитуду UI колебаний реактивной мощности, а значение , где . В случае с индуктивностью ; с емкостью . Поэтому принято считать, что QL > 0, а QC < 0.
Закон Ома для электрической цепи синусоидального тока с емкостью:

где комплексное сопротивление равняется мнимой величине - jXC, что является емкостным сопротивлением.
Энергия WC электрического поля конденсатора (рис. 1, в), как и катушки индуктивности, имеет пульсирующий характер.

40)

Реальный конденсатор (с потерями) можно представить эквивалентной схемой последовательного соединения резистивного сопротивления R и емкостного Xc

При последовательном соединении R и Xc приложенное напряжение U, согласно второму закону Кирхгофа, равно сумме падений напряжения в резистивном сопротивлении UR и на емкости UС

При синусоидальном токе

Напряжение на резистивном сопротивлении

Т.к. UR совпадает по фазе с током.

Напряжение на ёмкости

Т.е. напряжение UC отстаёт от тока на .

Действующие значения напряжений определяется по формулам.

Уравнение общего напряжения можно записать в следующем виде:

Несовпадение по фазе слагаемых в уравнении затрудняет определение амплитуды и действующего значения приложенного к цепи напряжения.

Воспользуемся векторным способом сложения синусоидальных величин

41) –

42) -

43)

Законы Кирхгофа в цепях синусоидального тока.
Методы расчета цепей синусоидального тока

Для мгновенных значений ЭДС, токов и напряжений остаются справедливыми сформулированные ранее законы Кирхгофа.

П е р в ы й: в любой момент времени алгебраическая сумма токов в узле электрической цепи равна нулю:

, (2.8)

где n – число ветвей, сходящихся в узле.

В т о р о й: в любой момент времени в замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме напряжений на всех остальных элементах контура:

, (2.9)

где m – число ветвей, образующих контур.

Токи, напряжения и ЭДС, входящие в уравнения (2.8) и (2.9), есть синусоидальные функции времени, которые мы рассматриваем как проекции некоторых векторов на оси координат. Так как сложению проекций соответствует сложение векторов и соответствующих им комплексных чисел, то справедливыми будут следующие уравнения, которые можно записывать как для действующих, так и для амплитудных значений.

Законы Кирхгофа в векторной форме: Законы Кирхгофа в символической форме:
(2.10) (2.11)

44)

Компенса́цияреакти́вноймо́щности — целенаправленное воздействие на баланс реактивной мощности в узле электроэнергетической системы с целью регулирования напряжения, а в распределительных сетях и с целью снижения потерь электроэнергии[1]. Осуществляется с использованием компенсирующих устройств. Для поддержания требуемых уровней напряжения в узлах электрической сети потребление реактивной мощности должно обеспечиваться требуемой генерируемой мощностью с учетом необходимого резерва. Генерируемая реактивная мощность складывается из реактивной мощности, вырабатываемой генераторами электростанций и реактивной мощности компенсирующих устройств, размещенных в электрической сети и в электроустановках потребителей электрической энергии.

Компенсация реактивной мощности особенно актуальна для промышленных предприятий, основными электроприёмниками которых являются асинхронные двигатели, в результате чего коэффициент мощности без принятия мер по компенсации составляет 0,7— 0,75. Мероприятия по компенсации реактивной мощности на предприятии позволяют:

· уменьшить нагрузку на трансформаторы, увеличить срок их службы,

· уменьшить нагрузку на провода, кабели, использовать их меньшего сечения,

· улучшить качество электроэнергии у электроприемников (за счёт уменьшения искажения формы напряжения),

· уменьшить нагрузку на коммутационную аппаратуру за счет снижения токов в цепях,

· избежать штрафов за снижение качества электроэнергии пониженным коэффициентом мощности,

· снизить расходы на электроэнергию.

 

46. «Проводимости ветвей и полная проводимость. Треугольники токов и проводимостей. Связь между действующими (и амплитудными) значениями тока и напряжения. Энергетический процесс.»

1. для расчета сложных электрических цепей и цепей переменного тока, вместо сопротивления используют проводимость.

Проводимость в цепи постоянного тока g — величина, обратная сопротивлению

3 типа: активное-g, реактивное- b, полное- y. Полная проводимость равна обратному полному сопротивлению: y= 1/z

первый- треугольник токов, второй, проводимостей.

47. «сущность символического метода. Три формы записи комплексного числа»

Суть метода состоит в том, что величины, характеризующие электрическую цепь (сила тока, напряжение, сопротивление, мощность), описываются c помощью аппарата комплексных чисел, a они в свою очередь, могут быть представлены в виде векторов на комплексной плоскости. Ha этих векторах в ходе расчета строят так называемые векторные диаграммы

 алгебраическая запись

 тригонометрическая запись

 показательная форма записи

48. «выражение тока, напряжения, сопротивления, проводимости, эдс электромагнитной индукции, мощность комплексными числами. Законы ома и кирхгофа в символическом виде»

напряжение комлексным числами  ток комплексными числами полное сопротивление полное проводимость  полная мощность

По первому закону Кирхгофа, алгебраическая сумма мгновенных значений токов, сходящихся в любом узле схемы, равна нулю:

Тогда по второму закону Кирхгофа,

 

49. «комплексная передаточная функция. Частотные характеристики. АЧХ, ФЧХ. Годограф. Частотные характеристики простейших двухполюсников»

Передаточная комплексная функция (коэффициент передачи, системная функция) цепи определяет реакцию цепи на внешнее воздействие и равна отношению выходной величины (напряжение, ток) к входной величине (напряжение, ток), выраженных в комплексной форме. Предполагается, что в цепи действует одно внешнее воздействие, т. е. цепь содержит один источник воздействия, а другие независимые источники напряжения или тока отсутствуют или не действуют.
Различают четыре вида передаточных функций:
передаточная функция по напряжению

передаточная функция по току

передаточное сопротивление

передаточная проводимость

Передаточные функции

Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ)

Амплитудно-частотная характеристика (АЧХ) — зависимость амплитуды выходного сигнала от частоты входного сигнала. А также функция выражающая (описывающая) эту зависимость. А также — график этой функции. (Математически амплитуда — это модуль некоторой комплекснозначной функции от частоты.) Также может рассматриваться АЧХ других комплекснозначных функций частоты, например, спектральной плотности мощности сигналаФа́зочасто́тная характеристика (ФЧХ) — зависимость разности фаз между выходным и входным сигналами от частоты сигнала, функция, выражающая (описывающая) эту зависимость, также — график этой функции.

· Для линейной электрической цепи, зависимость сдвига по фазе между гармоническими колебаниями на выходе и входе этой цепи от частоты гармонических колебаний на входе.

Годограф вектор-функции х (t) – кривая, описываемая концом переменного вектора х (t), начало которого при всех значениях t – постоянная точка О (t – действительная переменная величина, например, время).
Годограф даёт наглядное представление об изменении величины, изображаемой переменным вектором, и о скорости этого изменения, направленной по касательной к годографу. Например, если скорость точки – величина, изображаемая переменным вектором то, отложив значения этого вектора в разные моменты времени от какой-то точки О, получим годограф скорости. При этом вектор, характеризующий быстроту изменения скорости в некоторой точке М, т.е. ускорение в этой точке, в любой момент времени направлен по касательной к годографу скорости в соответствующей его точке.

комплексные спектральные плотности

 где - спектральная плотность напряжения, - фазовая плотность напряжения.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.208 с.