Обзор системы кондиционирования — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Обзор системы кондиционирования

2022-09-11 26
Обзор системы кондиционирования 0.00 из 5.00 0 оценок
Заказать работу

 

В кондиционере тепло, переданное хладагенту в испарителе, переносится по системе циркулирующим хладагентом R134a (циркуляция хладагента обеспечивается компрессором). Поток хладагента переносит тепло от испарителя к конденсатору, где оно рассеивается в атмосферу. Подобным образом, как только тепло, переданное в конденсатор, проводится через материал оребрения, оно излучается в атмосферу. Поток набегающего воздуха (поток воздуха, проходящего через радиатор под действием скоростного напора при движении автомобиля) отводит тепло от конденсатора. Это еще одна разновидность конвекции. В системе кондиционирования воздуха тепло из салона автомобиля передается через металлическое оребрение испарителя более холодному хладагенту (R134a). И аналогично, тепло от более теплого хладагента на другой стороне системы кондиционирования передается через металлическое оребрение конденсатора, откуда отводится путем излучения и конвекции. При поглощении тепла хладагент испаряется и переносит тепло в конденсатор. В этой точке системы хладагент находится под высоким давлением и имеет высокую температуру. Температура хладагента выше, чем температура наружного воздуха вокруг конденсатора.

Снова тепло перетекает от более теплого тела к более холодному и, таким образом, рассеивается снаружи автомобиля. Отдавая тепло, хладагент снова конденсируется, превращаясь в жидкость, и цикл повторяется. Одним из основных преимуществ использования хладагента является его способность циклически изменять агрегатное состояние в широких диапазонах температуры и давления, которые имеют место в системе кондиционирования. Напоминание: хладагент дважды совершает фазовый переход за один цикл. Из газа в жидкость в конденсаторе и из жидкости обратно в газ в испарителе.

Свойства хладагента

 

Энтальпия — это количество тепловой энергии, содержащейся в хладагенте и измеряемой в килоджоулях на килограмм хладагента. На диаграмме прямые постоянного давления проходят горизонтально, так что перемещение вправо-влево происходит при постоянном давлении, в то время как другие свойства изменяются. Прямые линии постоянной энтальпии проходят вертикально, так что при перемещении вверх-вниз энтальпия остается постоянной, но изменяются другие свойства. Линии постоянной температуры на диаграмме представляют собой кривые особой формы. Обратите внимание, как проходят линии внутри петли, образованной кривыми насыщенной жидкости и насыщенного пара: они абсолютно горизонтальны. Это означает, что, если давление и температура остаются постоянными, смесь может иметь состав от 0% газа до 100% газа в любой пропорции. Доля газа и жидкости зависит от энтальпии или, проще говоря, от того, сколько энергии содержится в килограмме хладагента. Отметьте также, что для заданного давления существует только одно значение температуры, при которой хладагент насыщен. Это означает, что весь хладагент только что перешел в газообразное состояние. Если температура растет дальше, газ будет перегретым. Так как изменение агрегатного состояния соответствует изменению энтальпии (количества тепловой энергии), это является ключевым моментом в работе системы кондиционирования.

 

1. Хладагент поступает в компрессор. В нашем примере это холодный газ с температурой 10С при давлении около 2,2 бар.

2. Компрессор выполнил свою работу. Заметьте, что давление выросло с 2,2 бар примерно до 13,5 бар. Также резко возросла температура газа — примерно до 70С. Одновременно с ростом давления и температуры происходит увеличение энтальпии (так как процесс отклоняется вправо на диаграмме). Затем хладагент, обладая большей энергией, входит в конденсатор.

3. Попав в конденсатор, хладагент отдает часть своего тепла, его температура снижается, но давление остается постоянным. В этой области хладагент представляет собой насыщенный пар, который при дальнейшем отводе тепла начинает конденсироваться.

4. Смесь содержит 0% газа — это насыщенная жидкость. Температура хладагента такая же, как была в точке 3, но энтальпия значительно уменьшилась. Тепловая энергия была рассеяна через конденсатор.

5. Это точка выхода из конденсатора. Между точками 4 и 5 конденсатор только охлаждает жидкость. Заметьте, что давление остается постоянным, но температура и энтальпия уменьшаются. Этот процесс называется процессом переохлаждения.

6. Между точками 5 и 7 находится расширительный клапан. Когда хладагент проходит через дросселирующее устройство клапана, давление и температура резко падают (вертикальная линия на диаграмме). В точке 6 хладагент вновь пересекает кривую насыщенной жидкости.

7. Хладагент входит в испаритель. Заметьте, что часть хладагента уже превратилась в пар. Как показывает диаграмма, смесь жидкости и пара содержит около 27% пара. В данном примере температура хладагента составляет около 0С. В этой точке хладагент начинает поглощать тепло, что от него и требуется. Отметьте относительно низкое значение энтальпии. В этой точке хладагент прошел большую часть пути через испаритель. Он поглотил большое количество тепла, отметьте рост энтальпии. Температура хладагента осталась той же, что была на входе в испаритель. В точке 8 хладагент представляет собой насыщенный пар. После того, как хладагент покидает испаритель и до момента входа компрессор в точке 1, температура хладагента несколько повышается. Этот процесс называют перегревом. Переохлаждение и перегрев: поскольку процесс поглощения тепла протекает между точками 7 и 1, это называется охлаждающей способностью. При большем переохлаждении можно было бы сдвинуться дальше влево по диаграмме, а затем пересечь кривую насыщенной жидкости в точке, которая бы продлила процесс поглощения тепла. Перегрев также имеет важное значение. Повышение температуры хладагента сверх точки насыщения является средством защиты от попадания части жидкого хладагента в компрессор. Это может случиться, если хладагент поглотил недостаточное количество тепловой энергии, чтобы полностью превратиться в пар. В силу особенности автомобильных кондиционеров требуется какое-либо регулирование холодопроизводительности, чтобы гарантировать, что она соответствует нагрузке на систему (этот вопрос будет рассмотрен в следующей главе). Например, в апреле требуется меньше холода, чем в июле. По этой причине система кондиционирования должна иметь возможность регулирования.


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.