II. Атомно-эмиссионный спектральный анализ — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

II. Атомно-эмиссионный спектральный анализ

2021-06-23 25
II. Атомно-эмиссионный спектральный анализ 0.00 из 5.00 0 оценок
Заказать работу

II. АТОМНО-ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ

 

 

Методы эмиссионного спектрального анализа основаны на идентификации длин волн, измерении интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии, и используются для качественного и количественного элементного анализа.

 

II.2. ВОЗБУЖДЕНИЕ СПЕКТРА

Рассмотрим возможные пути возбуждения атомов - способы увеличения их энергии: термическое возбуждение атомов путем столкновений с молекулами ионами и электронами и возбуждение внешним излучением (флуоресценция). В атомно-эмиссионном спектральном анализе чаще всего используется термическое возбуждение.

Энергию, необходимую для возбуждения атома, называют потенциалом возбуждения и обычно выражают в электрон-вольтах. Электрон-вольт - это энергия, приобретаемая электроном при прохождении в электрическом поле разности потенциалов в 1В. Энергию, приводящую к отрыву от атома его внешнего валентного электрона, называют потенциалом ионизации.

Наиболее простым видом возбуждения атомов является повышение температуры, обусловливающее рост тепловой энергии (в частности, энергии поступательного движения) атомов. Однако даже при сравнительно высоких температурах среднее значение энергии (распределенное на все атомы) слишком мало для того, чтобы перевести все атомы в возбужденное состояние. Но в каждом газе встречаются молекулы, скорость которых согласно максвелловскому распределению скоростей значительно выше средней. Поэтому переход атомов в возбужденное состояние возможен при столкновении с быстрыми молекулами. При этом кинетическая энергия превращается во внутриатомную энергию электронов и остается у одного из столкнувшихся атомов.

При возбуждении атомов путем столкновения с электронами кинетическая энергия электрона при неупругом столкновении с атомом преобразуется во внутреннюю энергию атома. Если передаваемая энергия достаточно высока, то происходит возбуждение атома. После этого возможна отдача избытка энергии атомом в виде кванта электромагнитного излучения.

Возбуждение спектра происходит в источниках спектра. В большинстве источников одновременно происходит испарение твердых и жидких образцов, распад молекул на атомы, ионизация и возбуждение атомов и ионов, испускание частицами вещества электромагнитного излучения.

Механизм испарения пробы зависит от типа источника света, способа введения в него пробы и природы пробы. В одних источниках проба испаряется быстро - взрывоподобно, в других - медленно. Различают три механизма испарения: тепловое, когда проба испаряется из расплава, сублимацию - переход пробы из твердого состояния в пар, минуя стадию плавления, и катодное распыление, когда проба переходит в пар под действием бомбардирующих ее ионов.

В зависимости от способа введения пробы в источник света может происходить полное или частичное ее испарение. В зависимости от химического состава пробы в пар могут поступать одновременно свободные атомы и недиссоциированные молекулы, или только атомы, или только молекулы. При этом может наблюдаться явление фракционного испарения, когда элементы, входящие в состав пробы, поступают в источник не одновременно, а поочередно в зависимости от летучести того или другого соединения.

Большая часть атомов и молекул при испарении попадает в зону возбуждения и, соответственно, принимает участие в формировании спектра пробы. Но некоторые частицы рассеиваются в стороны или быстро покидают зону возбуждения вследствие конвекции или диффузии.

В зоне возбуждения вещество находится в состоянии плазмы. Плазму можно рассматривать как смесь электронного, ионного и атомного газов. При высокой температуре и достаточно большом давлении (высокой концентрации частиц) происходит большое число столкновений. В результате этого кинетическая энергия легких и тяжелых частиц выравнивается - устанавливается термодинамическое равновесие. В большинстве источников света, используемых для эмиссионного спектрального анализа, плазма изотермична.

В зоне возбуждения молекулы диссоциируют на атомы, а при достаточно высокой температуре возможна ионизация атомов. Одновременно между атомами и ионами пробы могут проходить химические реакции, которые вновь приводят к образованию молекул. Если испарение происходит в воздухе или в атмосфере какого-либо химически активного газа, то молекулы могут образовываться в результате взаимодействия компонентов пробы и атмосферы.

Свободные атомы, ионы, электроны и молекулы находятся в зоне возбуждения в постоянном движении. Сталкиваясь друг с другом, они обмениваются энергией. Столкновения называют упругими, если они приводят только к изменению кинетической энергии столкнувшихся частиц и изменению направления их движения. Если в результате столкновения происходит изменение внутренней энергии частиц, то такие столкновения называют неупругими.

Различают неупругие столкновения I и II рода. Если при столкновении атома с электроном атом переходит на более высокий энергетический уровень, а электрон теряет часть своей энергии, то такое взаимодействие называется ударом I рода. Если же в результате столкновения возбужденного атома с электроном атом переходит на более низкий энергетический уровень, а энергия электрона возрастает, то это удар II рода.

Время жизни возбужденного атома невелико - 10-7-10-8 с. Однако некоторые атомы имеют такие возбужденные состояния, из которых электрон не может спонтанно вернуться в основное состояние. Для этих метастабильных состояний возбужденное состояние оказывается более длительным, и вероятность ударов II рода повышается. Атом из метастабильного состояния может вернуться в нормальное состояние либо через удар II рода с другим атомом, либо путем возбуждения в более высокое энергетическое состояние (ступенчатое возбуждение). Последнее играет важную роль при возбуждении искровых спектров.

 

II.4. СПЕКТРАЛЬНЫЕ ПРИБОРЫ

 

Разложение излучаемого спектра на составляющие или выделение излучения с определенной длиной волны проводится с помощью спектральных приборов. На рис. II.1 представлена принципиальная схема спектрального прибора для эмиссионного анализа.

 

Рис. II.1 Принципиальная схема спектрального прибора

 

 Изображение источника излучения с помощью осветительной системы фокусируется на входную щель спектрального прибора. Затем с помощью коллиматорного объектива формируется параллельный пучок света, который попадает на диспергирующий элемент. Последний осуществляет пространственное разделение лучей в зависимости от длины волны. После диспергирующего элемента свет попадает на камерный объектив, который в своей фокальной плоскости формирует многократные изображения входной щели прибора для каждой длины волны разложенного пучка света.

В зависимости от типа прибора полученный спектр можно рассматривать визуально (спектроскоп или стилоскоп), фотографировать на фотопластинку (спектрограф) или с помощью выходных щелей регистрировать фотоэлектрическими приемниками света (спектрометр).

Из основных технических характеристик спектральных приборов можно выделить следующие.

1. Рабочая область - диапазон длин волн, для работы в котором предназначен прибор.

2. Угловая дисперсия спектрального прибора - D j= d j/ d l - изменение угла отклонения луча света с изменением длины волны. Определяется величиной дисперсии диспергирующего элемента.

3. Линейная дисперсия - Dl = dl / d l= D j F - расстояние между двумя спектральными линиями с разностью длин волн d l. На величину линейной дисперсии влияют угловая дисперсия диспергирующего элемента D j и фокусное расстояние камерного объектива F (геометрические параметры прибора). В технической документации обычно приводится обратная линейная дисперсия 1/ Dl, выраженная в ангстремах или нанометрах на миллиметр. Линейная дисперсия призменных приборов увеличивается по мере уменьшения длины волны. Поэтому при одной и той же разности длин волн коротковолновые линии находятся на большем расстоянии, чем длинноволновые. График зависимости расстояния между линиями от длины волны называют графиком линейной дисперсии или дисперсионной кривой.

4. Разрешающая способность - R =l/ d l - отношение длины волны к той разнице длин волн, при которой спектральные линии наблюдаются раздельно. На величину разрешающей способности оказывают влияние в первую очередь линейная дисперсия и ширина входной щели. Наилучшее разрешение двух спектральных линий с близкими значениями длин волн можно получить при узкой входной щели спектрального прибора.

5. Светосила спектрального прибора. Светосилой gl называют отношение освещенности изображения спектральной линии E к спектральной яркости источника излучения В - gl= E l/ B l. Светосилу прибора характеризуют следующие основные фотометрические величины. Световой поток Ф измеряется количеством световой энергии, протекающей в единицу времени через некоторую поверхность S. Единица измерения - ватт (для видимой области - люмен). Освещенность Е - световой поток, приходящийся на единицу некоторой поверхности S: E = Ф / S. Единица измерения Вт/см2 (в видимой области люкс). Яркость источника В измеряется световым потоком D Ф, испускаемым внутри телесного угла a с площадки источника DS в направлении нормали к этой площадке В =D Ф /D S a. В зависимости от способа регистрации спектра различают светосилу по световому потоку g n= Ф / В (фотоэлектрическая регистрация спектра) и светосилу по освещенности g 0= E / B (при фотографической регистрации). Светосила в основном определяется потерей света при прохождении его через спектральный прибор и относительным отверстием камерного объектива. Яркость линейчатого спектра не зависит от ширины щели спектрографа. Яркость сложного или непрерывного спектра снижается с уменьшением ширины входной щели и увеличением линейной дисперсии спектрального прибора. Таким образом с увеличением линейной дисперсии спектрального прибора улучшаются условия регистрации спектральных линий малой интенсивности за счет ослабления интенсивности сплошного фона.

 

II.5.1. Пламя

Пламя - самый первый источник света для эмиссионного спектрального анализа. Оно применяется с тех пор, когда Кирхгоф и Бунзен, в 1854 году вводя в пламя соли металлов, открыли характеристичность атомных и молекулярных спектров и положили тем самым начало спектральному анализу.

Пламя как источник света имеет ряд специфических свойств. Энергия, необходимая для получения атомного пара определяемых элементов и возбуждения спектра, получается за счет энергии химических реакций, протекающих между компонентами горючей смеси.

 

Рис. II.2. Пламя

Стабилизируя расход газов с помощью достаточно простых технических средств, можно достичь высокой степени постоянства условий возбуждения спектра - значительно большей, чем в электрических источниках. Относительно низкие температуры, достигаемые в пламенах, с одной стороны, ограничивают круг определяемых элементов щелочными и щелочноземельными металлами. Однако, с другой стороны, небольшое количество линий в спектре пламени (для возбуждения эмиссионного спектра других элементов температура слишком низка) и низкий уровень собственного фонового излучения позволяют использовать для проведения анализа достаточно простые и дешевые приборы (пламенные фотометры).

Диффузионное пламя, в которое окислитель поступает из окружающей среды, непригодно для аналитических целей из-за высокого уровня фонового сплошного спектра и низкой температуры. Поэтому на практике обычно применяют пламена предварительно смешанных горючего газа и окислителя. По характеру истечения пламени из сопла горелки их разделяют на турбулентные и ламинарные. Рассмотрим более подробно строение пламени, получающегося при спокойном истечении газовой смеси - ламинарное пламя. В нем можно выделить три зоны: зону внутреннего конуса, промежуточную зону и зону внешнего конуса (рис. II.2). Во внутреннем конусе происходит неполное первичное окисление горючего газа. Полного сгорания не происходит даже при избытке окислителя. Эта зона характеризуется максимальной температурой и чаще всего используется для аналитических целей, так как в ней оптимальным образом сочетаются высокая температура и относительно низкий собственный фон. Во внешнем конусе в результате диффузии кислорода из окружающего воздуха окончательно окисляются продукты неполного сгорания горючего газа, образующиеся в основной зоне горения вблизи поверхности внутреннего конуса.

Физико-химические процессы, протекающие в пламенах, отличаются большой сложностью. Значительные затруднения при исследовании пламен возникают из-за различных промежуточных процессов, приводящих к образованию короткоживущих и неустойчивых при нормальных условиях частиц, например OH, CH, C2.

Форма и размеры пламени в целом и отдельных его зон в значительной степени зависят от технических особенностей горелки. Опыт показывает, что устойчивое горение получается, если скорость истечения на выходе из сопла горелки в два-три раза выше скорости горения. Если это условие не выполняется, то происходит либо срыв пламени (скорость подачи газа слишком высока) либо проскок пламени внутрь горелки (скорость подачи газа мала). Скорости горения различных газовых смесей значительно различаются. Так, для смесей пропан - бутан - воздух, ацетилен - воздух и ацетилен - кислород скорости горения составляют 60, 160 и 2500 см/с соответственно.

Одной из наиболее важных характеристик пламени является его температура. Максимальные температуры пламен для наиболее распространенных в анализе газовых смесей составляют (в °С):

      бытовой газ - воздух                 1800

      ацетилен - воздух                      2200

      водород - воздух                          2300

      ацетилен - закись азота            2700

При использовании пламени в качестве источника спектра анализируемая проба обычно вводится в него в виде аэрозоля водного раствора с помощью специальных распылителей. Схему процессов, протекающих в пламени при введении аэрозоля, можно представить следующим образом:

испарение растворителя из капелек аэрозоля “жидкость - газ” и образование твердых частиц аэрозоля “твердое тело - газ”;

испарение частиц аэрозоля “твердое тело - газ” и диссоциация молекул на атомы;

образование соединений типа MeO, MeOH и MeX за счет реакций получившихся атомов с молекулами кислорода, радикалами и анионами, имеющимися в растворителе и в пламени;

ионизация части атомов (при достаточно высокой температуре пламени);

возбуждение атомов, молекул и ионов;

переход их из возбужденного в основное энергетическое состояние с испусканием квантов света.

В конструкциях современных горелок для эмиссионного анализа растворов реализуется тот же принцип, что и в обычных лабораторных горелках Бунзена, с той лишь разницей, что окислитель подается под давлением. Корпус горелки и ее наконечник изготавливаются из тугоплавкого стекла или из металла, химически инертного к исследуемым растворам. Для распыления обычно применяются конические пневматические распылители, в которых в качестве распыляющего газа используется окислитель. При работе с различными газовыми смесями горелки различаются диаметром отверстий в наконечнике, что позволяет обеспечить соответствие скорости истечения газовой смеси скорости распространения фронта пламени. Для эмиссинного анализа обычно используют пламена конической формы. Питание горелок горючим газом обычно осуществляется от баллонов со сжатыми газами. Окислитель (обычно воздух) чаще всего подают с помощью компрессора. Режим газовых потоков (давление, расход газов) контролируют и регулируют по показаниям манометров и ротаметров с помощью редукторов и регуляторов расхода газов. Более подробно вопросы конструкции и принципы работы горелок и распылителей рассмотрены в разделе, посвященном атомно-абсорбционному спектральному анализу.

 

Дуга постоянного тока

 

Рис. II.4. Принципиальная схема генератора дуги постоянного тока

Электрической дугой называется газовый разряд с большой плотностью тока и малым падением напряжения между электродами. Принципиальная схема генератора дуги постоянного тока представлена на рис. II.4. Для того чтобы зажечь дугу, необходимо замкнуть электроды. Для этого электроды либо сдвигаются до контакта, а затем раздвигаются на необходимое расстояние, либо их замыкают графитовым стержнем. Сопротивление R используется для стабилизации дуги. Ток i, протекающий в такой схеме, равен

i = U /(R + r),                                                          (II.11)

где U - приложенная разность потенциалов; R - величина добавочного сопротивления; r - собственное сопротивление дуги. Чтобы сила тока дуги была достаточно стабильной, необходимо, чтобы стабилизирующее сопротивление было много больше сопротивления дуги.

Так как время горения разряда дуги практически неограниченно, то токопроводящий канал расширяется до стационарного сечения диаметром 1 - 2 мм. Это приводит к снижению плотности тока и, соответственно, температуры плазмы до 5000°С. Непрерывное горение дуги приводит к сильному разогреву поверхности электродов, и поэтому испарение материала пробы обычно происходит из капли расплава. На катоде во время горения дугового разряда можно выделить катодное пятно - источник термоэмиссии электронов. Около этого пятна существует прикатодное пространство, в котором происходит вытягивание ионов из плазменного шнура, разгон их и бомбардировка катода. Эта область обладает сильным градиентом электрического поля и наиболее эффективна для возбуждения спектра.

Температура плазмы дуги в основном определяется ее элементным составом. Увеличение тока мало сказывается на температуре плазмы, так как при этом наблюдается расширение дугового канала. При этом плотность тока, а следовательно, и температура плазмы практически не изменяется. Если анализируемый образец представляет собой многокомпонентную систему, содержащую элементы с различными потенциалами ионизации, то температура плазмы определяется элементом основы с наиболее низким потенциалом ионизации. Присутствие в пробе, а следовательно, и в плазме легкоионизуемых атомов (например, щелочных элементов) приводит к тому, что значительная часть энергии расходуется на ионизацию этих атомов, что приводит к снижению температуры дуги. Заполнение промежутка трудноионизируемым элементом (например, добавление к пробе угольного порошка) позволяет повысить температуру плазмы.

Наблюдается различие температур для катода (около 3900°С) и анода (около 3200°С). Благодаря этому можно, меняя полярность дуги, изменять условия испарения пробы с поверхности угольного электрода в зону разряда. Общая концентрация атомов в дуге при той же концентрации элемента в пробе выше, чем в искре, что обеспечивает значительно большую интенсивность спектра.

Дуга постоянного тока относится к очень неравномерным (неоднородным) источникам спектра. Интенсивность линий меняется в зависимости от того, какой участок плазмы выбран для регистрации спектра. Неравномерность интенсивности в плазме дуги объясняется несколькими причинами. Во-первых, температура плазмы не постоянна во всем объеме. В центре она самая высокая, а к периферии постепенно падает. Соответственно в разных частях плазмы различны и условия атомизации и возбуждения. Кроме того, неравномерно распределение атомов и ионов вдоль дуги. В прикатодной области плазмы заметно увеличивается интенсивность линий ионов, что объясняется их повышенной концентрацией у катода.

При практическом анализе дуга постоянного тока чаще всего используется для анализа порошкообразных проб. Этому способствует высокая температура электродов, а также в ряде случаев упрощение стадии пробоподготовки.

К основным недостаткам этого источника можно отнести появление фона - молекулярного спектра CN, C2 и других соединений в области длин волн более 340 нм, что делает невозможным использование ее для анализа. В видимой области спектра источником значительного фона служат раскаленные концы электродов, а также твердых частиц пробы и материала электродов, попавших в зону разряда.

Для дуги характерно явление фракционного испарения, т.е. раздельного испарения элементов пробы в зависимости от летучести того или другого соединения. Пределы обнаружения в дуге постоянного тока обычно составляют 10-3 - 10-4 %.

 

Дуга переменного тока

Дуга переменного тока между угольными электродами при достаточно большой силе тока (>10 А) горит так же устойчиво, как и дуга постоянного тока. Однако при меньших токах или при использовании металлических электродов в момент приближения питающего напряжения и, соответственно,

Рис. II.5. Принципиальная схема генератора дуги переменного тока

силы тока к нулю дуга гаснет и в начале следующего полупериода не загорается. Это связанно с тем, что при снижении тока электроды остывают, прекращается термоэмиссия электронов, разрядный промежуток деионизируется и становится непроводящим. Для того чтобы в моменты прохождения питающего напряжения через нуль дуговой разряд возобновлялся, необходимо поддерживать электропроводность межэлектродного промежутка. Эта задача решается с помощью схемы, представленной на рис. II.5. Схему условно можно разделить на две части: основную цепь и вспомогательную (цепь активатора). Повышающий трансформатор активатора Т заряжает конденсатор С2 до напряжения около 3000 В. В момент пробоя вспомогательного разрядного промежутка ВП в контуре, состоящем из катушки L2, конденсатора С2 и вспомогательного разрядника ВП, возникают высокочастотные колебания. На концах второй (высоковольтной) катушки L1 воздушного трансформатора возникает э.д.с. порядка 6000 В, пробивающая рабочий промежуток. Эти пробои и служат для периодического поджига дуги, питаемой через основную цепь. Для предотвращения попадания токов высокой частоты в сеть она шунтируется конденсатором С1.

Высоковольтные, но маломощные импульсы высокой частоты, генерируемые активатором, практически не сказываются на излучении дуги.

Импульсный характер дугового разряда переменного тока обусловливает его особенности в сравнении с дугой постоянного тока: более высокую температуру разряда и большую воспроизводимость интенсивностей спектральных линий. В отличие от дуги постоянного тока дуга переменного тока не имеет постоянной полярности. Это сказывается на характере поступления вещества в зону разряда. В дуге переменного тока в дуговой промежуток поступает вещество с каждого электрода одинаково, и концентрация возбужденных атомов распределяется примерно одинаково по высоте дугового промежутка (если оба электрода из одинакового материала).

Благодаря прерывистому горению дуги переменного тока вещество электродов поступает в зону разряда менее интенсивно, чем в дуге постоянного тока, и поэтому спектры угольной дуги переменного тока не столь богаты молекулярными полосами. Фон в спектре дуги переменного тока имеет то же происхождение, что и в дуге постоянного тока.

Концентрация вещества пробы в газовом облаке дуги зависит не только от силы тока, но и от длительности разряда и пауз переменного тока. При длительных паузах и коротких вспышках поступление материала пробы в дуговой разряд происходит менее интенсивно. Изменяя параметры высокочастотного контура (активизатора) дуги переменного тока и силу тока, можно влиять на интенсивность поступления вещества пробы в дуговой разряд. Температура электродов дуги переменного тока вследствие ее прерывистого горения несколько ниже, чем в случае дуги постоянного тока, но она достаточно высока для испарения всех материалов, которые плавятся и испаряются в дуге переменного тока. Фракционность испарения в дуге переменного тока выражена меньше, чем в случае дуги постоянного тока. Пределы обнаружения в дуге переменного тока обычно составляют 10-3 - 10-4%, воспроизводимость 5-10%.

 

II.6. ОСВЕТИТЕЛЬНАЯ СИСТЕМА

Сформулируем основные требования правильного освещения входной щели спектрального прибора: входная щель должна быть освещена так, чтобы произошло полное освещение диспергирующего элемента, а яркость изображения источника спектра на входной щели была максимальна.

 

Можно выделить следующие схемы освещения входной щели.

1. Зеркальный конденсор - сферическое зеркало, помещенное за источником и фокусирующее его изображение на входную щель. К недостаткам такой схемы относится слишком большой размер изображения источника.

Рис. II.7. Трехлинзовый конденсор

2. Трехлинзовый конденсор (рис. II.7) - при такой схеме освещения на щель проецируется изображение второй линзы. L 3 - антивиньетирующая линза - строит изображение второй линзы конденсора на объективе коллиматора. Так как в плоскости второй линзы изображен источник, третья линза это изображение переносит в увеличенном виде на объектив коллиматора. Явление виньетирования состоит в частичном затемнении пучка лучей, поступающего в оптическую систему, происходящее из-за его ограничения диафрагмами прибора (в данном случае входной щелью). Виньетирование приводит к постепенному падению освещенности при переходе от центра изображения к краю.

3. Схема с двойной фокусировкой - для увеличения светового потока часто комбинируют зеркальный и линзовый конденсоры, что позволяет достигнуть двукратного увеличения яркости изображения источника.

 

II.7.1. С ветофильтры

 

Светофильтр - устройство, меняющее спектральный состав и энергию падающего на него оптического излучения. Основной его характеристикой является спектральная зависимость коэффициента пропускания t (или абсорбционности А =-lgt) от длины волны падающего излучения. Селективные светофильтры предназначены для отрезания (поглощения) или выделения каких-либо участков спектра. Основными характеристиками светофильтров являются длина волны максимума полосы пропускания, полуширина полосы пропускания и коэффициент пропускания в максимуме полосы пропускания.

Действие светофильтра может быть основано на любом оптическом явлении, обладающем спектральной избирательностью - на поглощении света (абсорбционные светофильтры), отражении (отражательные светофильтры), интерференции (интерференционные светофильтры), дисперсии (дисперсионные светофильтры) и других. В практике атомно-эмиссионного спектрального анализа чаще всего используются абсорбционные и интерференционные светофильтры.

Стеклянные абсорбционные светофильтры отличаются постоянством спектральных характеристик, устойчивостью к воздействию света и температуры, высокой оптической однородностью, простотой изготовления. К основным недостаткам таких светофильтров относятся достаточно большая ширина полосы пропускания (20 - 30 нм) и довольно высокие потери света.

Интерференционные светофильтры состоят из двух полупрозрачных зеркал (например, слоев серебра) и помещенного между ними слоя диэлектрика оптической толщины. Для защиты от повреждения и удобства в обращении светофильтр заключают между двумя стеклянными пластинками. В проходящем свете интерферируют лучи, непосредственно прошедшие через светофильтр и отраженные два, четыре, шесть и более раз от полупрозрачных слоев. В результате в проходящем свете остаются лучи с длиной волны, равной удвоенной толщине слоя диэлектрика. Интерференционные светофильтры выделяют узкие области спектра (5 - 10 нм) с меньшей потерей света, чем абсорбционные.

Кривая пропускания интерференционного светофильтра имеет довольно длинную область, простирающуюся в обе стороны от максимума, где прозрачность сравнительна невелика. По этой причине помехи фона при работе с интерференционными светофильтрами гораздо меньше, чем с абсорбционными, но яркая линия мешающего элемента даже на сравнительно далеком расстоянии от максимума может оказать значительное влияние на результат измерения. Другой особенностью интерференционных светофильтров является зависимость положения максимума полосы пропускания от угла падения лучей света.

Комбинируя абсорбционные и интерференционные светофильтры, можно получить симметричную полосу пропускания с полушириной 1 - 2 нм. 

 

II.7.2 С пектральные призмы

 

Спектральная призма - пространственный многогранник, изготовленный из прозрачного для данного спектрального диапазона материала с достаточно высокой дисперсией.

Рис. II.8. Спектральная призма

На рис. II.8 изображена схема пространственного разделения луча света, состоящего из двух монохроматических лучей (l1 и l2), на два луча при его прохождении через треуголь-ную призму. Можно выделить следующие основные параметры призмы как диспергирующего элемента:

Показатель преломления n =sin i 1 / sin i 2. Для всех веществ, используемых для изготовления диспергирующих элементов, наблюдается уменьшение показателя преломления с увеличением длины волны. Это приводит к уменьшению угловой дисперсии призмы - спектральные линии при одинаковых интервалах Dl будут расположены ближе друг к другу - т.е. хуже разрешены, что затрудняет работу со спектром.

Угловая дисперсия призмы

 

    D j=2sin(A /2)/(1- n 2sin2(A/2))1/2 dn / d l=(T / b) dn / d l                  (II.12)

 

пропорциональна дисперсии показателя преломления. Из формулы (II.12) следует, что угловая дисперсия тем больше, чем больше показатель преломления и чем больше угол в вершине призмы. Однако угол при вершине призмы нельзя увеличивать больше определенного значения. Это связано с тем, что при больших значениях этого угла луч света после преломления не выходит из призмы - наблюдается полное поглощение света. Обычно максимальный угол находится в пределах 64 - 84°.

Теоретическая разрешающая способность R 0= TD j. На разрешающую способность призмы влияют ее геометрические размеры. Практически размеры призм ограничиваются изотропностью материала, из которого они изготовлены.

Материал для изготовления призмы должен обладать достаточно высокой дисперсией показателя преломления, быть прозрачным в рабочей области спектра, прочным и легко поддаваться обработке, устойчивым к внешним воздействиям и при всем этом быть достаточно дешевым. Всем этим требованиям одновременно не удовлетворяет ни одно вещество. Поэтому материал для изготовления призм подбирают в первую очередь по оптическим характеристикам. Например, для видимой части спектра достаточно прозрачны кварц и оптическое стекло, но показатель преломления кварца для этой области значительно ниже, чем у стекла. Поэтому для работы с видимым спектром применяют призмы из специальных оптических стекол с большим показателем преломления (тяжелые стекла, содержащие свинец), например из флинта или крона.

Оптические стекла практически непрозрачны для лучей с длиной волны менее 390 нм. Поэтому для получения спектров в ультрафиолетовой части спектра применяются призмы, изготовленные из кристаллического или плавленого кварца.

 

II.8. РЕГИСТРАЦИЯ СПЕКТРА

 

Можно выделить три основных способа регистрации спектра: визуальный, фотографический и фотоэлектрический. Рассмотрим их более подробно.

 

II. АТОМНО-ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ

 

 

Методы эмиссионного спектрального анализа основаны на идентификации длин волн, измерении интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии, и используются для качественного и количественного элементного анализа.

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.088 с.