Тема1.1: «Основы общей фармакокинетики и фармакодинамики» — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Тема1.1: «Основы общей фармакокинетики и фармакодинамики»

2022-08-21 24
Тема1.1: «Основы общей фармакокинетики и фармакодинамики» 0.00 из 5.00 0 оценок
Заказать работу

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Кемеровский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

КАФЕДРА ФАРМАКОЛОГИИ

Дисциплина: «Основы обшей фармакологии»

Специальность 32.05.01 «Медико-профилактическое дело»

 

Раздел 1. Общая фармакология

Раздел 2. Основы фармакологии ЛС, влияющих на периферическую нервную систему

Раздел 2. Основы фармакологии ЛС, влияющих на периферическую нервную систему

Раздел 2. Основы фармакологии ЛС, влияющих на периферическую нервную систему

Раздел 3. Основы фармакологии ЛС, влияющих на ЦНС

Раздел 3. Основы фармакологии ЛС, влияющих на ЦНС

Раздел 3. Основы фармакологии ЛС, влияющих на ЦНС

Раздел 4. Основы фармакологии ЛС, влияющих на исполнительные органы

Раздел 4. Основы фармакологии ЛС, влияющих на исполнительные органы

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Кемеровский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

КАФЕДРА ФАРМАКОЛОГИИ

Дисциплина: «Основы обшей фармакологии»

Специальность 32.05.01 «Медико-профилактическое дело»

 

Раздел 1. Общая фармакология

Тема1.1: «Основы общей фармакокинетики и фармакодинамики»

План лекции:   1. Предмет и задачи фармакологии. Ее связь с другими медицинскими науками. 2. Этапы создания новых лекарственных препаратов (доклиническое изучение, кли- нические исследования). 3. Фармакокинетика – определение понятия. 4. Всасывание. Основные механизмы транспорта лекарств через клеточные мембраны    и межклеточные промежутки. 5. Пути введения лекарств (Энтеральные и парэнтеральные) 6. Распределение лекарств в организме. 7. Депонирование лекарств в организме 8. Элиминация лекарственных веществ. Экскреция. Биотрансформация. 9. Определение понятия фармакодинамики 10. Мишени для действия лекарственных веществ 11. Взаимодействие лекарственных веществ с рецепторами 12. Взаимодействие лекарственных веществ с транспортными системами, ферментами, ионными каналами, генами 13. Локализация действия и виды действия лекарственных веществ 14. Факторы, влияющие на фармакодинамику и фармакокинетику 15. Классификация побочных эффектов лекарственных средств 16. Явления при повторных введениях и при отмене лекарственных средств     Фармакология — наука о взаимодействии лекарственных веществ с организмом и о путях изыскания новых лекарственных средств. Действие лекарственных средств на организм обозначают тер­мином «фармакодинамика». Это понятие включает фармакологи­ческие эффекты, механизмы действия, локализацию дей­ствия, виды действия. Влияние организма на лекарственные вещества относят к поня­тию «фармакокинетика», ко­торое включает всасывание, распреде­ление, депонирование, превращения и выведение ле­карственных веществ из организма. Фармакодинамику и фармакокинетику фармакологи изучают в опытах на животных, исполь­зуя фармакологические, физиологи­ческие, биохимические и патофизиологические экспери­ментальные методы. Кроме того, о фармакодинамике и фармакокинетике ле­карственных ве­ществ судят, исследуя их свойства при применении в клинике. Такие данные относятся к об­ласти клинической фарма­кологии. В фармакологических лабораториях ведется также работа по изыс­канию новых лекарствен­ных средств. Основным их источником является химический синтез. Часть веществ извле­кают из расти­тельного и животного сырья, продуктов жизнедеятельности микро­организмов. В последние годы появились рекомбинантные препа­раты (препараты эндогенных веществ, полученные методами генной инженерии), препараты моноклональных антител. К новым лекарственным средствам предъявляют высокие требо­вания (особенно к их безопасности). Каждый новый лекарствен­ный препарат исследуют очень подробно; такие исследования дос­тупны только крупным фармакологическим лабораториям. Если при лабораторных исследованиях нового средства получа­ют хорошие результаты, материалы исследования передают в Науч­ный центр экспертизы и государственного контроля лекарствен­ных средств, по заключению которого Минздрав РФ дает разрешение для клинических испытаний вещества. Только после успешных кли­нических испытаний принимают решение о промышленном про­изводстве нового лекарственного препарата. В настоящее время большое количество лекарств импортируется из других стран. Многие лекарственные препараты производятся одновременно рядом фирм, и каждая фирма дает препарату свое название. Поэтому один и тот же препарат может поступать в апте­ки под разными названиями. В то же время для большинства ле­карств существуют международные названия, которые обычно ука­зываются на упаковке препарата после его фирменного названия. Так как запомнить все фирменные названия лекарственных препа­ратов невозможно, надо ориентироваться прежде всего на их меж­дународные названия.   Фармакокинетика — всасывание, распределение, депонирование, превращения и выведение лекарственных веществ. Все эти процессы связаны с проникновением лекарственных веществ через клеточную (цитоплазматическую) мембрану. Основ­ные способы проникновения веществ через клеточную мембрану: пассивная диффузия, фильтрация, активный транспорт, облегчен­ная диффузия, пиноцитоз. Пассивная диффузия - проникновение веществ через мембрану в любом ее месте по градиенту концентрации (если с одной стороны мембраны концентрация вещества выше, чем с дру­гой стороны, вещество проникает через мембрану в сторону мень­шей концентрации). Так как мембраны состоят в основном из липидов, путем пассивной диффузии через клеточную мембрану легко проникают липофильные неполярные вещества, т.е. вещества, ко­торые хорошо растворимы в липидах и не несут электрических за­рядов. Наоборот, гидрофильные полярные вещества (вещества, хо­рошо растворимые в воде и имеющие электрические заряды) путем пассивной диффузии через мембрану практически не проникают. Фильтрация. В клеточной мембране имеются водные кана­лы (водные поры), через которые проходит вода и могут проходить растворенные в воде гидрофильные полярные вещества, если раз­меры их молекул не превышают диаметра каналов. Этот процесс называют фильтрацией. Так как через водные каналы цитоплазматической мембраны нет постоянного однонаправленного движения воды, ряд авторов счи­тают, что через водные каналы гидрофильные полярные вещества проникают путем пассивной диффузии по градиенту концентра­ции (пассивная диффузия в водной фазе). Однако диаметр водных каналов цитоплазматической мембраны очень мал - 0,4 нм, поэтому большинство лекарственных веществ через эти каналы не проходят. Фильтрацией называют также прохождение воды и растворен­ных в ней веществ через межклеточные промежутки. Путем фильт­рации через межклеточные промежутки проходят гидрофильные полярные вещества. Активный транспорт — транспорт лекарственных веществ через мембраны с помощью специальных транспортных систем. Такими транспортными системами обычно являются фун­кционально активные белковые молекулы, встроенные в цитоплазматическую мембрану. Лекарственное вещество, имеющее аффи­нитет к транспортной системе, соединяется с местами связывания этой системы с одной стороны мембраны; затем происходит конформация белковой молекулы и вещество высвобождается с другой стороны мембраны. Активный транспорт избирателен, насыщаем, требует затрат энергии, может происходить против градиента концентрации. Облегченная диффузия— перенос вещества через мем­браны специальными транспортными системами по градиенту кон­центрации без затрат энергии. Пиноцитоз - впячивания клеточной мембраны, окружаю­щие молекулы вещества и образующие вакуоли, которые проникают через клетку и высвобождают вещество с другой стороны клетки. 1. Всасывание (абсорбция) При большинстве путей введения лекарственные вещества, преж­де чем они попадут в кровь, проходят процесс всасывания. Различают энтеральные (через пищеварительный тракт) и па­рентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ. Энтеральные пути введения — введение веществ под язык, внутрь, ректально. При этих путях введения вещества всасываются в ос­новном путем пассивной диффузии. Поэтому хорошо всасываются липофильные неполярные вещества и плохо - гидрофильные по­лярные соединения. При введении веществ под язык (сублингвально) всасыва­ние происходит быстро и вещества попадают в кровь, минуя пе­чень. Однако всасывающая поверхность невелика и таким путем можно вводить только высокоактивные вещества, назначаемые в малых дозах. Например, сублингвально применяют таблетки нит­роглицерина, содержащие 0,0005 г нитроглицерина; действие на­ступает через 1—2 мин. Парентеральные пути введения — введение веществ, минуя пище­варительный тракт. Наиболее употребительные парентеральные пути введения - в вену, под кожу, в мышцы. При внутривенном введении лекарственное вещество сра­зу попадает в кровь; действие вещества развивается очень быстро, обычно в течение 1—2 мин. Чтобы не создавать в крови слишком высокой концентрации вещества, большинство лекарственных средств перед внутривенным введением разводят в 10—20 мл изото­нического (0,9%) раствора натрия хлорида или изотонического (5%) раствора глюкозы и вводят медленно — в течение нескольких ми­нут. Нередко лекарственные вещества в 250—500 мл изотоническо­го раствора водят в вену капельно, иногда в течение многих часов. 2. Распределение При попадании в общий кровоток липофильные неполярные вещества распределяются в организме относительно равномерно, а гидрофильные полярные вещества — неравномерно, Препятствия­ми для распределения гидрофильных полярных веществ являются, в частности, гистогемагпические барьеры, т.е. барьеры, отделяющие некоторые ткани от крови. К таким барьерам относятся гематоэн-цефалический, гематоофтальмический и плацентарный барьеры. Гематоэнцефалический барьер образован слоем эндотелиальных клеток капилляров мозга, в котором отсутствуют межклеточные промежутки. Гематоэнцефалический барьер препятствует проник­новению гидрофильных полярных веществ из крови в ткани мозга. При воспалении мозговых оболочек проницаемость гематоэнцефалического барьера повышается. Гематоофтальмический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани глаз. Плацентарный барьер во время беременности препятствует про­никновению ряда веществ из организма матери в организм плода. 3. Депонирование При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депо­нироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжа­ется 15—20 мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После пре­кращения наркоза наступает посленаркозный сон, который про­должается 2—3 ч и связан с действием препарата, высвобождаемо­го из жирового депо. 4. Биотрансформация Большинство лекарственных веществ в организме подвергается превращениям (биотрансформации). Различают метаболическую трансформацию (окисление, восстановление, гидролиз) и конъюга­цию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно, продукты превра­щений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъ­югации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исход­ных веществ. Конъюгаты обычно малоактивны. Большинство лекарственных веществ подвергается биотрансфор­мации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемых микросомальными ферментами (в основном изоферменты цитохрома Р-450). Эти ферменты действуют на липофильные неполярные веще­ства, превращая их в гидрофильные полярные соединения, кото­рые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств. Так, у мужчин активность микросомальных ферментов несколь­ко выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устой­чивы к действию многих фармакологических веществ. У новорожденных система микросомальных ферментов несовер­шенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием. 5. Выведение (экскреция) Большинство лекарственных веществ выводится из организма через почки в неизмененном виде или в виде продуктов биотрансформа­ции. В почечные канальцы вещества могут поступать при фильтра­ции плазмы крови в почечных клубочках. Многие вещества секретируются в просвет проксимальных канальцев. Транспортные системы, которые обеспечивают эту секрецию, малоспецифичны, поэтому разные вещества могут конкурировать за связывание с транспорт­ными системами. При этом одно вещество может задерживать сек­рецию другого вещества и таким образом задерживать его выведение из организма. Например, хинидин замедляет секрецию дигоксина, концентрация дигоксина в плазме крови повышается, возможно проявление токсического действия дигоксина (аритмии и др.). Липофильные неполярные вещества в канальцах подвергаются обратному всасыванию (реабсорбции) путем пассивной диффузии. Гидрофильные полярные соединения мало реабсорбируются и вы­водятся почками. Выведение (экскреция) слабых электролитов прямо пропорцио­нально степени их ионизации (ионизированные соединения мало реабсорбируются). Поэтому для ускоренного выведения кислых соединений (например, производных барбитуровой кислоты, салицилатов) реакцию мочи следует изменять в щелочную сторону, а для выведения оснований — в кислую. Кроме того, лекарственные вещества могут выделяться через желудочно-кишечный тракт (выделение с желчью), с секретами потовых, слюнных, бронхиальных и других желез. Летучие лекар­ственные вещества выделяются из организма через легкие с выды­хаемым воздухом. У женщин в период кормления грудью лекарственные вещества могут выделяться молочными железами и с молоком попадать в орга­низм ребенка. Поэтому кормящим матерям не следует назначать ле­карства, которые могут неблагоприятно воздействовать на ребенка. Биотрансформация и экскреция лекарственных веществ объе­диняются термином «элиминация». Период полуэлиминации — t1/2 — время, за которое концентрация вещества в плазме крови снижается наполовину. В основное время элиминации t1/2 не зависит от дозы вещества и одинаков в разное время. Для поддержания средней терапевтической концентрации ле­карственного вещества можно вводить раствор этого вещества внут­ривенно капельно. При этом концентрация вещества в плазме кро­ви сначала повышается быстро, затем медленнее и, наконец, устанавливается стационарная концентрация, при которой скорость введения вещества равна скорости его элиминации биотрансформация + экскреция Фармакодинамика - фармакологические эффекты, механизмы дей­ствия, локализация действия, виды действия лекарственных веществ. Фармакологические эффекты лекарственного вещества — измене­ния в деятельности органов, систем организма, которые вызывает дан­ное вещество (например, усиление сокращений сердца, снижение артериального давления, стимуляция умственной деятель­ности, устранение страха и напряженности и т.п.). Как правило, каж­дое вещество вызывает ряд характерных для него фармакологических эффектов. В каждом конкретном случае используют лишь определен­ные эффекты лекарственного средства, которые определяют как ос­новные эффекты. Остальные (не используемые, нежелательные) фар­макологические эффекты называют побочными эффектами. Механизмы действия лекарственных веществ — способы, кото­рыми вещества вызывают фармакологические эффекты. К основ­ным вариантам механизмов действия относятся действие на: 1) спе­цифические рецепторы, 2) ферменты, 3) ионные каналы, 4) транспортные системы. Большинство лекарственных веществ действует на специфичес­кие рецепторы. Эти рецепторы представлены чаще всего функцио­нально активными белковыми молекулами; взаимодействие с ними дает начало биохимическим реакциям, которые ведут к возникно­вению фармакологических эффектов. Различают специфические рецепторы, связанные с клеточными мем­бранами (мембранные рецепторы), и внутриклеточные рецепторы. К рецепторам, которые сопряжены с ферментами, относятся, в частности, рецепторы инсулина, сопряженные с тирозинкиназой. Рецепторы, взаимодействующие с G -белками, — М-холинорецепторы (мускариночувствительные холинорецепторы), адренорецепторы, дофаминовые рецепторы, опиоидные рецепторы и др. G-белки, т.е. ГТФ-связывающие белки, локализованы в клеточ­ной мембране и состоят из α-β-γ-,субъединиц. При взаимодей­ствии лекарственного вещества с рецептором α -субъединица G-белка соединяется с ГТФ (GTP) и воздействует на ферменты или ионные. каналы. Один рецептор взаимодействует с несколькими G-белка­ми, а каждый комплекс а-субъединицы G-белка с ГТФ действует на несколько молекул фермента или на несколько ионных каналов. Таким образом осуществляется механизм амплифайера (усилите­ля): при активации одного рецептора изменяется активность мно­гих молекул фермента или многих ионных каналов. Одними из первых были обнаружены G-белки, связанные с β 1-адренорецепторами сердца. При активации симпатической иннер­вации сердца возбуждаются β 1-адренорецепторы; через посредство G-белков активируется аденилатциклаза; из АТФ образуется цАМФ, активируется протеинкиназа, при действии которой фосфорилируются и открываются кальциевые каналы. Увеличение входа ионов Са2+ в клетки синоатриального узла уско­ряет 4-ю фазу потенциала действия — сокращения сердца учащаются. Открытие Са2+-каналов в волокнах рабочего миокарда ведет к уве­личению концентрации Са2+ в цитоплазме (вход Са2+ способствует высвобождению Са2+ из саркоплазматического ретикулума). Ионы Са2+ связываются с тропонином С (составная часть тропонин-тропомиозина); таким образом уменьшается тормозное влияние тропонин-тропомиозина на взаимодействие актина и миозина - сокраще­ния сердца усиливаются. При активации парасимпатической иннервации сердца (блуж­дающие нервы) возбуждаются М2-холинорецепторы и через посред­ство G-белков аденилатциклаза угнетается — сокращения сердца урежаются и ослабляются (в основном ослабляются сокращения предсердий, так как парасимпатическая иннервация желудочков относительно бедна). Таким образом, G-белки могут оказывать на аденилатциклазу как стимулирующее, так и угнетающее влияние. Стимулирующие G-белки обозначили как Gs -белки (stimulate), а угнетающие — Gi-белки (inhibit). При возбуждении М1-холинорецепторов, М3-холинорецепторов, α1-адренорецепторов через Gq белки активируется фосфолипаза С, которая способствует тому, что из фосфатидилинозитол-4,5-дифос-фата образуются инозитол-1,4,5-трифосфат и диацилглицерол. Инозитол-1,4,5-трифосфат стимулирует высвобождение ионов Са2+ из саркоплазматического ретикулума. К внутриклеточным рецепторам относятся рецепторы кортикостероидов и половых гормонов. В частности, рецепторы глюкокортикоидов локализованы в цитоплазме клеток. После соединения глюкокортикоида с цитоплазматическими рецепторами комплекс глюкокортикоид-рецептор проникает в ядро и оказывает влияние на экспрессию различных генов. Способность веществ связываться с рецепторами (тенденция ве­ществ к связыванию с рецепторами) обозначают термином «аффи­нитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным. Для характеристики аффи­нитета используют показатель pKD - отрицательный логарифм кон­станты диссоциации, т.е. концентрации вещества, при которой за­нято 50% рецепторов. Внутренняя активность - способность веществ стимулировать рецепторы; определяется по величине фармакологического эффек­та, связанного с активацией рецептора. В обычных условиях нет прямой корреляции между аффинитетом и внутренней активнос­тью: вещество может занимать все рецепторы и вызывать слабый эффект, и, наоборот, вещество может занимать 1% рецепторов и вызывать максимальный для данной системы эффект. Агонисты — вещества, обладающие аффинитетом и внутренней активностью. Полные агонисты обладают аффинитетом и максимальной внут­ренней активностью. Частичные (парциальные) агонисты обладают аффинитетом и менее, чем максимальной внутренней активностью. Антагонисты обладают аффинитетом, не обладают внутренней активностью и препятствуют действию полных или частичных агонистов (вытесняют агонисты из связи с рецепторами). Если дей­ствие антагониста устраняется при повышении дозы агониста, та­кой антагонизм называют конкурентным. Частичные агонисты могут быть антагонистами полных агонистов. В отсутствие полного агониста частичный агонист стимулиру­ет рецепторы и вызывает слабый эффект. При взаимодействии с полным агонистом частичный агонист занимает рецепторы и пре­пятствует действию полного агониста. Например, окспренолол — частичный агонист β -адренорецепторов в отсутствие влияний сим­патической иннервации на сердце вызывает слабую тахикардию. Но при повышении тонуса симпатической иннервации окспренолол действует, как настоящий β -адреноблокатор, и вызывает брадикардию. Это объясняется тем, что частичный агонист окспренолол уст­раняет действие медиатора норадреналина, который по отношению к β 1 -адренорецепторам сердца является полным агонистом. Агонисты-антагонисты — вещества, которые по-разному действу­ют на подтипы одних и тех же рецепторов: одни подтипы рецепто­ров они стимулируют, а другие - блокируют. Например, наркоти­ческий анальгетик налбуфин по-разному действует на подтипы опиоидных рецепторов. Каппа-рецепторы налбуфин стимулирует (и поэтому снижает болевую чувствительность), а мю-рецепторы блокирует (и поэтому менее опасен в плане лекарственной зависи­мости). Понятие «локализация действия» означает преимущественное место (места) действия тех или иных лекарственных веществ. На­пример, сердечные гликозиды действуют в основном на сердце. К понятию «виды действия» относятся местное и общее (резорбтивное) действие, рефлекторное действие, основное и побочное действие, прямое и косвенное действие. Примером местного действия может быть действие местноанестезирующих средств. Большинство лекарств оказывают общее (резорбтивное) действие, которое обычно развивается после всасывания (резорбции) веще­ства в кровь и его распространения в организме. Как при местном, так и при резорбтивном действии вещества могут возбуждать различные чувствительные рецепторы и вызы­вать рефлекторные реакции. Основное действие лекарственного вещества — его эффекты, которые используются в каждом конкретном случае. Все остальные эффекты при этом оценивают как проявления побочного действия. Лекарственные вещества могут оказывать на те или иные орга­ны прямое действие. Кроме того, действие лекарственных веществ может быть косвенным. Например, сердечные гликозиды оказыва­ют на сердце прямое действие, но, улучшая работу сердца, эти ве­щества повышают кровоснабжение и функции других органов (кос­венное действие). Факторы, влияющие на фармакодинамику и фармакокинетику 1. Свойства веществ (химическое строение, физико-химические свойства, дозы) Фармакодинамика и фармакокинетика веществ зависят прежде всего от их химического строения. Вещества сходной химической структуры (например, ксантины, бензодиазепины) оказывают, как правило, сходное фармакологическое действие. Несомненное зна­чение имеют физико-химические свойства веществ (липофильность, полярность, степень ионизации). Действие каждого лекарственного вещества зависит от его дозы или концентрации. В общем, при увеличении дозы действие веще­ства усиливается. Сравнивая дозы, в которых два вещества вызывают эффект оди­наковой величины, судят об их активности. Обычно сравнивают дозы 50% эффекта - ЭД50 (ED50; effective dose). Так, если ЭД50 ве-щества А в 2 раза меньше, чем ЭД50 вещества Б, это означает, что вещество А в 2 раза активнее вещества Б. 2. Свойства организма (пол, возраст, генетические особенности, функциональное состояние, патологическое состояние) Фармакодинамика и фармакокинетика веществ зависят от пола, возраста, массы тела, индивидуальной чувствительности, функци­ональных и патологических состояний человека, которому эти ве­щества назначают. Мужчины по сравнению с женщинами более устойчивы к дей­ствию большинства веществ, так как мужские половые гормоны сти­мулируют синтез микросомальных ферментов печени. Фармакокинетика и фармакодинамика веществ в определенной степени зависят от массы тела. В целом чем больше масса тела, тем больше должна быть доза вещества. В отдельных случаях для более точного дозирования дозы веществ рассчитывают на 1 кг массы тела больного. Возможны различия в индивидуальной чувствительности к лекар­ственным средствам. Так, миорелаксант суксаметоний (дитилин) дей­ствует обычно 3—5 мин, так как быстро гидролизуется холинэстеразой плазмы крови. У некоторых больных (при недостаточности холинэс-теразы плазмы крови) суксаметоний может действовать 3—5 ч. Проти­вомалярийное средство примахин у ряда больных при недостаточнос­ти глюкоза-6-фосфатдегидрогеназы может вызывать разрушение эритроцитов (гемолиз). Такого рода необычные реакции связаны, как правило, с генетической недостаточностью тех или иных ферментов и обозначаются термином «идиосинкразия». Действие лекарственных веществ может зависеть от функцио­нального состояния организма или какой-либо его системы. Как правило, вещества стимулирующего типа действия сильнее действу­ют на фоне угнетения соответствующей функции; угнетающие ве­щества сильнее действуют на фоне активации. Действие лекарственных веществ может изменяться при патоло­гических состояниях. Так, действие местноанестезирующих веществ ослабляется в очаге воспаления. Некоторые лекарственные веще­ства действуют только при патологических состояниях. Например, ацетилсалициловая кислота (аспирин) снижает только повышен­ную температуру тела; сердечные гликозиды стимулируют работу сердца в основном при сердечной недостаточности. 3. Порядок назначения лекарств (время назначения, повторное применение, комбинированное применение) Выраженность действия ряда лекарственных веществ может за­висеть от времени суток, что связано с циклическими изменения­ми продукции гормонов, ферментов или других эндогенных веществ. Выявлены циркадианные (околосуточные — 22—26 ч) циклы действия многих веществ. Так, глюкокортикоиды наиболее активны в 8 ч утра, наркотические анальгетики — в 16 ч и т.п.                            При комбинированном применении двух или более лекарствен­ных веществ их действие может усиливаться или ослабляться. Уве­личение эффекта при комбинированном применении веществ обо­значают термином «синергизм». Простое суммирование эффектов двух одинаково действующих веществ обозначают как аддитивное действие. Если одно вещество значительно усиливает действие дру­гого вещества, это называют потенцированием. Ослабление действия веществ при их совместном применении обозначают как антаго­низм. При повторных введениях действие лекарственных веществ может ослабляться и для того, чтобы получить прежний эффект, приходится увеличивать дозу. Такое явление обозначают термином «привыкание» (толерантность). При этом уменьшается как терапевтическое, так и токсическое действие (термин «толерантность» чаще используют для обозначения устойчивости к токсическому действию). Если вещество медленно выводится из организма, то при по­вторных его введениях действие может усиливаться в результате накопления вещества в организме (материальная кумуляция). Повторное введение некоторых веществ, вызывающих необычно приятные ощущения (морфин, кокаин и др.), формирует у предрас­положенных к этому лиц сильное стремление к повторным приемам препарата. Возникает лекарственная зависимость, которая усугубля­ется тем, что при лишении препарата возникают тягостные ощуще­ния, обозначаемые термином «абстиненция». При лекарственной за­висимости к морфину (морфинизм) абстиненция проявляется сильными мышечными болями, нарушениями функций централь­ной нервной системы, сердечно-сосудистой системы, органов пи­щеварения и др. Такого рода зависимость обозначают термином «фи­зическая зависимость». Кроме того, выделяют психическую зависимость, при которой явления абстиненции мало выражены и имеют субъек­тивный характер (например, зависимость к препаратам индийской конопли).   Контрольные вопросы 1. Что изучает фармакология? Разделы фармакологии? 2. Что изучает фармакокинетика? 3. Что изучает фармакодинамика? 4. Какие этапы проходит лекарственное вещество в организме? 5. Какие существуют механизмы транспорта лекарственных веществ через биологические барьеры? 6. Как транспортируются липофильные и гидрофильные вещества? 7. Что такое биодоступность и биоэквивалентность? 8. Какие существуют пути введения лекарств в организм? 9. Что такое распределение и депонирование лекарственных веществ в организме?    

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.