Железнодорожная аналогия Уилера — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Железнодорожная аналогия Уилера

2020-02-15 153
Железнодорожная аналогия Уилера 0.00 из 5.00 0 оценок
Заказать работу

В свое время Уилер предложил оригинальный образ многомировой модели, получивший название «железнодорожная аналогия Уилера». Он представил, что в момент квантового измерения перед наблюдателем как бы оказывается железнодорожная стрелка, и его поезд может пойти в одном из нескольких направлений. В зависимости от того, в каком направлении пойдет поезд, наблюдатель увидит тот или иной результат измерения. Возможные направления движения поезда соответствуют альтернативным результатам измерения или различным эвереттовским мирам.

 

ИНФЛЯЦИЯ ВСЕЛЕННОЙ

 

Приверженцы инфляционной теории раздувающейся Вселенной во главе с нашим бывшим соотечественником Андреем Дмитриевичем Линде считают, что на изначальном этапе существовал только физический вакуум, пронизанный неким первичным полем, параметры которого сильно менялись из‑за квантовых флуктуаций, «вспенивающих» изначальное пространство‑время. Квантовая флуктуация – это неопределенность параметров какого‑то процесса, его «размазанность», и если одна из таких флуктуаций достигнет надкритического размера («размытость» параметра пересечет своим краем некоторую критическую границу), это может привести к острому локальному экстремуму интенсивности поля. Этот полевой «подскок» параметров и может создать условия для выхода на инфляционный режим. В итоге возникает молниеносно расширяющийся пузырек – зародыш нашей Вселенной, за невообразимо малый «квантовый» срок заполняющий как минимум объем Метагалактики. Так, по крайней мере умозрительно, рождается вселенская сцена, на которой материя и энергия по тщательно и не очень тщательно выписанным сценариям теорфизиков‑космологов начинают разыгрывать грандиозный спектакль под названием «Наша физическая реальность»! Тут надо заметить, что режущее вначале слух слово «сценарий» ученые, работающие в области космологии – науки о Вселенной в целом, – любят применять к любым «глобальным» процессам. Приятно хоть изредка чувствовать себя этаким всемогущим демиургом – сверхъестественным существом, создающим иные миры!

Хотя в квантовой инфляционной космологии еще очень много белых пятен, да и сам по себе механизм инфляции малопонятен, теоретики уже разработали инновационный сценарий вечной инфляции. Эта парадоксальная концепция предполагает, что квантовые флуктуации, подобные той, которая, возможно, положила начало нашей Вселенной, не исчезли в первые мгновения Большого взрыва, а продолжают самопроизвольно возникать, порождая все новые и новые миры. Не исключено, что и наша Вселенная сформировалась подобным образом в мире‑предшественнике. Точно так же можно допустить, что и в нашем мире возникнет флуктуация, которая разовьется в новую вселенную, может быть даже с иными физическими законами и структурой пространства‑времени, тоже впоследствии способную к космологической «редупликациии». Конечно же, в подобных сценариях очень много загадок. Так, не совсем ясна роль энергии вакуума (а эту загадочную «пустую» субстанцию теоретики мысленно буквально пересытили энергией!). Существуют предположения, что именно энергия вакуума определяет структуру космической материи. Будь она немного ближе к нулю, Вселенная так бы и осталась безжизненной и бесформенной смесью газа и пыли, равномерно распределенной по космическому пространству. В противном случае чем больше была бы величина темной энергии, тем быстрее первичное вещество сконденсировалось в массивные галактики, которые давным‑давно сколлапсировались бы в черные дыры.

Тут надо заметить, что хотя сценарий инфляционного рождения нашего мира находит значительное признание среди космологов, многомировая интерпретация чаще всего упоминается в учебниках по квантовой механике как своеобразный исторический казус. В «Структуре реальности» Брайана Грина мы можем найти этому следующее объяснение:

«Тем не менее теория существования Мультиверса не пользуется особой популярностью у физиков. Почему?

Ответ, к сожалению, окажется нелицеприятным для большинства. … Те, кого устраивают обычные предсказания и у кого нет особого желания понять, как получаются предсказанные результаты экспериментов, могут при желании просто отрицать существование всего, кроме того, что я называю „реальными“ объектами. Некоторые люди, например, инструменталисты и позитивисты, принимают эту линию как сущность философского принципа. Я уже сказал, что я думаю о таких принципах и почему. Другие люди просто не хотят думать об этом. Как‑никак, это столь грандиозный вывод, и он вызывает беспокойство, когда о нем слышишь впервые. Но я полагаю, что все эти люди ошибаются. Я надеюсь убедить читателей, которые терпеливо относятся ко мне, что понимание Мультиверса – это предварительное условие наилучшего возможного понимания реальности. Я говорю это не в духе суровой определенности поиска истины независимо от того, насколько неприятной она может оказаться (хотя надеюсь, что приму и такую позицию, если до этого дойдет). Напротив, я говорю это потому, что итоговое мировоззрение намного более цельно и обладает гораздо большим смыслом, чем все предыдущие мировоззрения. Оно возвышается над циничным прагматизмом, который в наше время зачастую является суррогатом мировоззрения ученых».

«Многоликая Вселенная» А. Д. Линде

 

ОБЛИК НАШЕГО МИРА

 

Каков же действительный облик нашего мира? Состоит ли он из бесконечного мелькания мириадов зеркальных отображений окружающей нас реальности в «мультиверсном представлении», или же Мироздание едино в своем «одноразовом проявлении»? Давайте прислушаемся к мнению современного апологета многомирья Дэвида Дойча:

«Возможно, из‑за споров, возникших среди физиков‑теоретиков, традиционно отправной точкой была сама квантовая теория. Сначала теорию формулируют как можно точнее, а затем пытаются понять, что она говорит нам о реальности. Это единственный возможный подход к пониманию мельчайших деталей квантовых явлений. Однако в отношении вопроса о том, состоит ли реальность из одной вселенной или из многих, этот подход излишне сложен.

Но если начинать с теории, существует две вещи, которые никто не будет оспаривать. Первая заключается в том, что квантовая теория не имеет равных себе в способности предсказывать результаты экспериментов даже при слепом использовании ее уравнений, без особых размышлений об их значении. Вторая состоит в том, что квантовая теория рассказывает нам нечто новое и необычное о природе реальности.

Следовательно, если лучшая теория, имеющаяся в распоряжении физиков, не ссылалась бы на параллельные вселенные, это просто значило бы, что нам нужна теория лучше, теория, которая ссылалась бы на параллельные вселенные, чтобы объяснить то, что мы видим».

Ну а подытожить головокружительное жизнеописание нашего мира поможет еще один отрывок из «Краткой истории времени от Большого взрыва до черных дыр» С. Хокинга:

«Попытки построить модель Вселенной, в которой множество разных начальных конфигураций могло бы развиться во что‑нибудь вроде нашей нынешней Вселенной, привели Алана Гута, ученого из Массачусетского технологического института, к предположению о том, что ранняя Вселенная пережила период очень быстрого расширения. Это расширение называют раздуванием, подразумевая, что какое‑то время расширение Вселенной происходило со все возрастающей скоростью, а не с убывающей, как сейчас. Гут рассчитал, что радиус Вселенной увеличивался в миллион миллионов миллионов миллионов миллионов (единица с тридцатью нулями) раз всего за крошечную долю секунды.

Гут высказал предположение, что Вселенная возникла в результате Большого взрыва в очень горячем, но довольно хаотическом состоянии. Высокие температуры означают, что частицы во Вселенной должны были очень быстро двигаться и иметь большие энергии. Как уже говорилось, при таких высоких температурах сильные и слабые ядерные силы и электромагнитная сила должны были все объединиться в одну. По мере расширения Вселенной она охлаждалась, и энергии частиц уменьшались. В конце концов должен был бы произойти так называемый фазовый переход, и симметрия сил была бы нарушена: сильное взаимодействие начало бы отличаться от слабого и электромагнитного. Известный пример фазового перехода – замерзание воды при охлаждении. Жидкое состояние воды симметрично, то есть вода одинакова во всех точках и во всех направлениях. Образующиеся же кристаллы льда имеют определенные положения и выстраиваются в некотором направлении. В результате симметрия воды нарушается.

Если охлаждать воду очень осторожно, то ее можно „переохладить“, то есть охладить ниже точки замерзания (0 град. Цельсия) без образования льда. Гут предположил, что Вселенная могла себя вести похожим образом: ее температура могла упасть ниже критического значения без нарушения симметрии сил. Если бы это произошло, то Вселенная оказалась бы в нестабильном состоянии с энергией, превышающей ту, которую она имела бы при нарушении симметрии. Можно показать, что эта особая дополнительная энергия производит антигравитационное действие аналогично космологической постоянной, которую Эйнштейн ввел в общую теорию относительности, пытаясь построить статическую модель Вселенной. Поскольку, как и в горячей модели Большого взрыва, Вселенная уже вращалась, отталкивание, вносимое космологической постоянной, заставило бы Вселенную расширяться с все возрастающей скоростью. Даже в тех областях, где число частиц вещества превышало среднее значение, гравитационное притяжение материи было бы меньше отталкивания, вносимого эффективной космологической постоянной. Следовательно, такие области должны были тоже расширяться с ускорением, характерным для модели раздувающейся Вселенной. По мере расширения частицы материи расходились бы все дальше друг от друга, и в конце концов расширяющаяся Вселенная оказалась бы почти без частиц, но все еще в переохлажденном состоянии. В результате расширения все неоднородности во Вселенной должны были просто сгладиться, как разглаживаются при надувании морщины на резиновом шарике. Следовательно, нынешнее гладкое и однородное состояние Вселенной могло развиться из большого числа разных неоднородных начальных состояний».

Разумеется, вполне естественно было бы считать, что в нашем ускоренно расширяющемся мире свету хватило бы времени для перехода из одной области ранней Вселенной в другую. В то же время расширением Вселенной можно было бы объяснить, почему в ней так много вещества и откуда оно взялось. Здесь просто надо принять как должное, что вокруг нас в диалектическом круговороте материи и энергии постоянно происходят взаимные переходы этих двух основных физических сущностей Мироздания. Вот и в микромире частицы могут рождаться в переходах: энергия – частица – античастица. При этом любопытно, как современная физика объясняет временно возникающий энергетический дефицит. В частности, Хокинг рассуждает так:

«Полная энергия Вселенной в точности равна нулю. Вещество во Вселенной образовано из положительной энергии. Но все вещество само себя притягивает под действием гравитации. Два близко расположенных куска вещества обладают меньшей энергией, чем те же два куска, находящиеся далеко друг от друга, потому что для разнесения их в стороны нужно затратить энергию на преодоление гравитационной силы, стремящейся их соединить. Следовательно, энергия гравитационного ноля в каком‑то смысле отрицательна. Можно сказать, что в случае Вселенной, примерно однородной в пространстве, эта отрицательная гравитационная энергия в точности компенсирует положительную энергию, связанную с веществом. Поэтому полная энергия Вселенной равна нулю».

Так ученый постепенно подводит нас к мысли о том, что «поскольку дважды нуль тоже нуль, количество положительной энергии вещества во Вселенной может удвоиться одновременно с удвоением отрицательной гравитационной энергии; закон сохранения энергии при этом не нарушится. Такого не бывает при нормальном расширении Вселенной, в которой плотность энергии вещества уменьшается по мере увеличения размеров Вселенной. Но именно так происходит при раздувании, потому что в этом случае Вселенная увеличивается, а плотность энергии переохлажденного состояния остается постоянной: когда размеры Вселенной удвоятся, положительная энергия вещества и отрицательная гравитационная энергия тоже удвоятся, в результате чего полная энергия останется равной нулю. В фазе раздувания размеры Вселенной очень сильно возрастают. Следовательно, общее количество энергии, за счет которой могут образовываться частицы, тоже сильно увеличивается. Гут по этому поводу заметил: „Говорят, что не бывает скатерти‑самобранки. А не вечная ли самобранка сама Вселенная?“

Сейчас Вселенная расширяется без раздувания… Затем Вселенная опять начнет расширяться и охлаждаться, так же как в горячей модели Большого взрыва, но теперь мы уже сможем объяснить, почему скорость ее расширения в точности равна критической и почему разные области Вселенной имеют одинаковую температуру».

Стивен Хокинг в невесомости

 

 

ГЛАВА СЕДЬМАЯ

ТЕОРИЯ ТЕОРИЙ

 

Самое, пожалуй, удивительное в современной физике – это неожиданная связь между космосом, где галактики и звездные скопления разбросаны подобно редким пылинкам, и тесным, исчезающе малым микромиром элементарных частиц. Два полюса мироздания! На одном огромная, расширяющаяся Вселенная, на другом – не видимые ни под каким микроскопом, почти эфемерные «кирпичики» вещества. И вот оказывается, что при определенных условиях Вселенная может обладать свойствами микрочастицы, а некоторые микрообъекты, возможно, содержат внутри себя целые космические миры.

В. С. Барашенков, «Кварки, протоны, Вселенная»

 

НОВОЕ ТЯГОТЕНИЕ

 

Выдающийся физик‑теоретик прошлого века, нобелевский лауреат Ричард Фейнман, по многим свидетельствам современников, был очень большим оригиналом. Это подтверждает и его знаменитый «Фейнмановский курс физики», полный новых подходов в изложении уже вроде бы устоявшихся разделов этой науки, и очень часто цитируемая книга «Характер физических законов». Раскрывая связь математики с физикой и анализируя всеобщность физико‑математических представлений, выдающийся физик часто обращался к всемирному закону тяготения Ньютона. При этом он любил высказывать парадоксальное мнение, что со времен Ньютона мы ничего не достигли в постижении механизма тяготения.

Тут надо признать, что, как бы ни был своеобразен творческий стиль мышления Фейнмана, в данном случае его мысли полностью противоречат признанной истории физики. Ведь еще в начале прошлого века Альберт Эйнштейн открыл свою общую теорию относительности, создав новую теорию гравитации и наметив путь объединения всех известных взаимодействий с силами всемирного тяготения. Прежде всего это касается объединения теории относительности и квантовой механики. Возникла даже наука‑кентавр – «квантовая космология». Она пока еще содержит много противоречий и неточностей, да и само ее право на существование признается далеко не всеми. При этом всегда следует учитывать, что теория относительности необходима для описания общей структуры пространства‑времени, а квантовая механика направлена на объяснение поведения субатомных частиц. К сожалению, пока еще эти теории во многом противоречат друг другу. Тем не менее «сверхновая космология» хорошо известна и ставит перед собой амбициознейшую цель объединить два полюса нашей реальности – уровень невообразимо малых квантов и так же трудно вообразимый космологический масштаб Метагалактики.

Как бы там ни было, но оптимистически настроенные физики‑теоретики полны надежд, что пусть даже в отдаленном будущем квантовая космология перерастет в «Теорию теорий», связывающую между собой все силы, действующие во Вселенной, с помощью одного‑единственного уравнения (рис. 16 цв. вкл.).

Тут я бы хотел приоткрыть некоторые «интимные подробности и секреты» внешне такой консервативной корпорации физиков‑теоретиков. Оказывается, внутри «официальной физики», опирающейся на исторически сложившиеся и, самое главное, подтвержденные неисчислимым количеством опытов модели окружающего нас мира, бурлят нешуточные страсти. Там группы молодых еретиков всегда готовы опровергнуть все и вся, невзирая ни на какие авторитеты, и все это управляется вообще мало понятным для непосвященных поветрием под названием «модные направления исследований».

Вот и конец прошлого столетия ознаменовался возникновением двух остро модных и уже конкурирующих направлений в теории квантовой гравитации. У них, как и полагается «квантовым кентаврам», довольно необычные имена – «петлевая квантовая гравитация», более известная аббревиатурой «ПКГ» (тоже дань «физической моде») и «теория суперструн», она же «теория стрингов», она же «мембранная теория», она же «М‑теория».

В теории ПКГ на субэлементарном уровне пространство оказывается не непрерывным, а состоящим из дискретных элементов, мельчайших единиц пространства, подобных открытым столетие назад квантам энергии. Объем такой минимальной единицы равен кубу с ребром планковской длины (~10‑35 м).

Мы уже знаем, что на микроскопическом уровне частицам нельзя одновременно приписать определенные координаты и скорости, энергию и время ее изменения, все микрообъекты подобны пятнам масла на квантовых волнах вероятности. В квантовом мире нет «пустого» пространства в обыденном смысле. То, что обычно воспринимается нами как пустота, лишенная атомов и молекул, например очень удаленные участки космоса без звезд, газа и пыли, ученые называют физическим вакуумом, кипящим морем особых «виртуальных» частиц и неисчерпаемым океаном энергии (рис. 17 цв. вкл.).


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.