Мир будущего – парение вне гравитации — КиберПедия 

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Мир будущего – парение вне гравитации

2020-02-15 146
Мир будущего – парение вне гравитации 0.00 из 5.00 0 оценок
Заказать работу

 

Сверхскопление галактик

 

ГРАВИТАЦИОННАЯ РЯБЬ ВСЕЛЕННОЙ

 

Источником гравитационных волн служат любые движения материальных тел, приводящие к неоднородному изменению силы тяготения в окружающем пространстве. Движущееся с постоянной скоростью тело ничего не излучает, поскольку характер его поля тяготения не изменяется. Для испускания волн тяготения необходимы ускорения, но не любые. Цилиндр, который вращается вокруг своей оси симметрии, испытывает ускорение, однако его гравитационное поле остается однородным, и волны тяготения не возникают. А вот если раскрутить этот цилиндр вокруг другой оси, поле станет периодически изменяться, и от цилиндра во все стороны побегут гравитационные волны.

Величина волн, якобы зарегистрированных Вебером (и тут же получивших название «волны Вебера»), в миллионы раз превышала теоретическую величину, которая следовала из теории тяготения Эйнштейна. Вебер утверждал, что эти волны пришли из закрытого пылевыми облаками центра нашей Галактики, о котором тогда было мало что известно. Астрономы уже давно подозревали, что в центральной области Млечного Пути скрывается какое‑то сверхмассивное тело, являющееся кандидатом в гравитационные коллапсары (рис. 22 цв. вкл.). Такая гипотетическая гигантская застывшая звезда или даже система из нескольких чудовищных черных дыр может постоянно поглощать множество окружающих звезд, выбрасывая при этом часть поглощенной энергии в виде гравитационного излучения. В начале нашего столетия астрофизики самым тщательным образом исследовали спектр излучения из центра нашей Галактики, подтвердив наличие кандидата в черные дыры и отринув обвинения предполагаемого коллапсара в космическом каннибализме. Таким образом, самые последние астрономические наблюдения никак не прояснили ситуацию. Тем временем вот уже полстолетия физики из всех стран мира пытаются экспериментально зафиксировать волны Вебера на разнообразных детекторах, вплоть до самых причудливых конструкций, без каких‑либо значимых результатов.

Ученые до сих пор теряются в догадках, как объяснить удивительные результаты опытов Вебера. Однако надо признать, что усилия экспериментаторов не пропали даром, и хотя им не удалось непосредственно обнаружить гравитационные волны, интерес научной общественности к данной проблеме позволил начать строительство нескольких установок и даже запланировать полет космической гравитационной обсерватории. Оптимисты даже считают, что в отдаленном будущем гравитационное излучение будут не только наблюдать, но даже использовать для передачи энергии и информации.

Мощный источник гравитационных волн возник при рождении нашего мира в Большом взрыве, на стадии мгновенного расширения Вселенной – космологической инфляции. Этот процесс породил такие сверхмощные гравитационные волны, что их остатки должны были сохраниться до настоящего времени. Их открытие, несомненно, станет сенсацией, и его трудно будет переоценить, ведь в реликтовых волнах раннего этапа Большого взрыва закодирована информация о строении «зародышевой» Вселенной.

Реально обнаружить волны тяготения можно, найдя подходящий космический источник гравитационного излучения. В этом плане весьма перспективны тесные двойные звезды. Мощность гравитационного излучения такой системы возрастает, если траектории звезд сильно вытянуты, тем более если двойная система состоит из нейтронных звезд или черных дыр. Такие системы подобны гравитационным маякам в космосе – их излучение имеет периодический характер.

 

НЕЙТРОННЫЕ ЗВЕЗДЫ

 

В космосе существуют и иные периодические источники, порождающие короткие, но чрезвычайно мощные гравитационные всплески. Подобное происходит при коллапсе (катастрофическом сжатии) массивных звезд, однако деформация звезды должна быть асимметричной, иначе излучение не возникнет. Во время коллапса мощность гравитационного излучения может составлять миллиарды миллиардов ватт! Еще больше энергии выделяется при слиянии нейтронных звезд. Это звезды, состоящие (кроме самого внешнего слоя – коры) не из атомов, а из элементарных частиц – нейтронов. Они образуются при очень сильном сжатии (гравитационном коллапсе) массивных обычных (состоящих из газа) звезд, чья начальная масса превышает несколько масс Солнца.

Характерные размеры нейтронной звезды составляют десятки километров, а средняя плотность приближается к плотности атомных ядер (один кубический сантиметр весит тысячи тонн). Массы всех известных нейтронных звезд близки к массе Солнца. Скорость вращения нейтронной звезды может быть очень высокой и превышать 100 тысяч километров в секунду.

Из‑за крошечного размера нейтронные звезды очень слабо видны даже в большие телескопы, но во многих случаях наблюдаются как источники рентгеновского излучения в тесных двойных системах звезд или пульсирующие радиоисточники (пульсары). По современным представлениям, большинство нейтронных звезд образуется при взрывах сверхновых. Наряду с черными дырами нейтронные звезды являются конечной стадией эволюции звезд большой массы.

Как обнаружить гравитационные волны экспериментально? Вебер использовал в качестве детекторов сплошные алюминиевые цилиндры метровой длины с пьезодатчиками (датчиками давления) на торцах. Их с максимальной тщательностью изолировали от внешних механических воздействий в вакуумной камере.

Идея эксперимента Вебера была проста. Пространство под действием гравитационных волн сжимается и растягивается. Благодаря этому цилиндр вибрирует в продольном направлении, выступая в качестве гравитационной антенны, а пьезоэлектрические кристаллы переводят вибрации в электрические сигналы. Любое прохождение космических волн тяготения практически одновременно действует на детекторы, разнесенные на тысячу километров, что позволяет исключить гравитационные импульсы от различного рода шумов.

В данной установке пучок света попадает на полупрозрачную пластинку и разделяется на два взаимно перпендикулярных луча, которые отражаются от зеркал, расположенных на одинаковом расстоянии от пластинки. Затем пучки опять сливаются и падают на экран, где возникает интерференционная картина (светлые и темные полосы и линии). Если скорость света зависит от его направления, то при повороте всей установки эта картинка должна измениться, если нет – остаться такой же, что и раньше.

В дальнейшем гравитационно‑волновые антенны значительно усовершенствовали. Сейчас в ряде стран действуют ультракриогенные вибрационные детекторы волн тяготения, работающие при температурах вблизи абсолютного нуля.

Интерференционный детектор волн тяготения работает сходным образом. Предполагается, что проходящая гравитационная волна будет деформировать пространство и изменять длину каждого плеча интерферометра (пути, по которому свет идет от делителя до зеркала), растягивая одно плечо и сжимая другое.

Интерференционная картинка соответственно претерпит изменения, и это можно будет зарегистрировать. Лазерный источник света должен быть и мощным, и стабильным по частоте, зеркала – идеально плоскими и идеально отражающими, вакуум в трубах, по которым распространяется свет, – максимально глубоким, механическая стабилизация всей системы – очень высокой.

Типы черных дыр

Сильным источником гравитационного излучения должны являться близко взаимодействующие черные дыры. Массы таких систем могут превышать массы тех же нейтронных звезд в миллиарды раз. Особенно интересные эффекты возникают в случае быстро вращающихся черных дыр.

 

АНТИГРАВИТАЦИЯ

 

По собственному опыту мы знаем, что материальные тела могут испытывать исключительно гравитационное притяжение. А может ли существовать в природе феномен антигравитации – отталкивания? К глубокому сожалению, современные газеты и журналы, не говоря уже о телевидении, буквально забиты подобной наукообразной рениксой. Здесь легко можно встретить весь набор глупейших заблуждений и самозабвенного фантазирования в духе барона Мюнхаузена, начиная с антигравитирующих торсионных полей и заканчивая паранормальной левитацией в «эфирных мирах». Создается впечатление, что внешне интеллигентные журналисты, пишущие на подобные темы, в действительности культурно необразованны и совершенно не знакомы с азами физической науки, не говоря уже о теории относительности Эйнштейна. Между тем пионерские исследования физиков‑теоретиков полны настолько необычных, глубоко парадоксальных результатов, что рядом с ними совершенно блекнет самая изощренная фантазия.

Так, среди поразительных теоретических открытий современности можно встретить и модели антигравитационного силового воздействия. Пока еще их радиус действия определяется только микроскопическими масштабами, однако физики‑экспериментаторы настойчиво ищут их проявление и на больших, макроскопических расстояниях. Насколько обоснованны выводы теоретиков? Не противоречат ли они известным законам природы? И почему до сих пор никто не обнаружил следов антигравитации?

Мы уже отмечали, что закон всемирного тяготения Ньютона и закон Кулона для взаимодействия двух заряженных тел имеют почти одинаковый вид. Различаются они лишь тем, что в закон Кулона входят электрические заряды тел, а в закон Ньютона – их массы, ну и еще константами: диэлектрической проницаемостью и гравитационной постоянной. В общем случае величина констант зависит от выбора системы единиц, и их легко можно свести к единице. Тогда законы вообще не различаются. Получается, что наряду с электрическими зарядами тела как бы имеют своеобразные гравитационные заряды, которые в точности равны их массам.

Это совершенно удивительный факт окружающей нас природы. На лекциях по физике часто приходится слышать вопрос: насколько случайны эти замечательные совпадения и не скрыта ли здесь какая‑то новая фундаментальная физическая закономерность? Мы уже знаем, что факт наличия масс взаимодействующих тел в законе всемирного тяготения впервые установили Гук и Ньютон. Ньютон даже ставил специальные опыты, чтобы выяснить, насколько это соответствует действительности. Не нашли отклонений от этого правила и другие физики, применявшие значительно более точные приборы. С помощью закона всемирного тяготения можно предсказать (и этим широко пользуются астрономы) на десятки лет вперед точно, день в день, появление комет, траектории планет и многочисленных искусственных спутников. Поэтому, создавая свою гравитационную релятивистскую теорию, Эйнштейн предположил, что равенство гравитационного заряда и массы выполняется абсолютно точно и для всех видов материи.

Постулируя равенство гравитационного заряда и массы, общая теория относительности Эйнштейна с самого начала считает, что в отличие от электрических гравитационные заряды у всех тел одного и того же знака. Поэтому и действующие между ними силы всегда направлены на сближение тел. Силы противоположного направления, антигравитация, исключены там изначально, так устроена эта теория!

 

СУПЕРГРАВИТАЦИЯ

 

После создания теории относительности физики открыли много новых видов материи, включая антивещество, странные и прелестные частицы, различные типы глюонов и кварков. Однако ничего похожего на уэллсовский кейворит – фантастический материал, экранирующий гравитацию, – в разнообразнейших опытах встречено не было. Какие только измерения не выполняли ниспровергатели теории тяготения! Изучали отклонения в земном поле пучков нейтронов из атомного реактора и медленных электронов, измеряли вес сверхпроводящих дисков и хитроумных гороскопов. Результат был один, вернее, полное его отсутствие. Тут следует заметить, что в науке отсутствие результата является также не менее важным результатом. Во всяком случае, все это еще более укрепило уверенность физиков в том, что антигравитации место лишь на страницах научно‑фантастических произведений.

Однако абсолютных запретов, применимых всегда и всюду, в природе не бывает, и сравнительно недавно физики, разрабатывающие варианты дальнейшего развития общей теории относительности Эйнштейна, совершенно неожиданно обнаружили, что в природе, по‑видимому, действительно должно быть «антигравитационное» поле, для которого постулат о равенстве гравитационного заряда и массы принимает специфический вид.

Все эти исследования связаны с миром элементарных частиц, для которого физики накопили огромный экспериментальный материал. Анализируя его, ученые постепенно осознали удивительный факт, что слабое силовое взаимодействие, ответственное за радиоактивный распад, сильное взаимодействие, удерживающее частицы в атомном ядре, и электромагнитные силы являются проявлениями одного и того же физического поля. Большие надежды физики связывают с перспективой превращения силового трио в квартет путем добавления в теорию четвертого взаимодействия – гравитации. Предварительные результаты уже показывают, что в природе вполне могут действовать несколько типов гравитационных полей. На сверхмалых расстояниях они тесно связаны между собой и изменение одного сразу вызывает изменения других. Это единое поле содержит супергравитационный мультиплет – семейство нескольких взаимопревращающихся силовых компонентов. Расщепляются и становятся практически независимыми они только на больших расстояниях. Новые супергравитационные компоненты, дополняющие известное нам гравитационное поле, – пока только гипотеза, но уже сейчас они составляют один из интереснейших вопросов современной физики. А самое интересное в том, что здесь есть возможность для антигравитации. Оказывается, что такие силы могут быть как притягивающими, так и отталкивающими. Это зависит от того, из чего состоят взаимодействующие тела – из вещества или из антивещества. Вещество и антивещество притягивают друг друга подобно тому, как это происходит в поле обычных гравитационных сил. А вот куски вещества, как показывает расчет, должны отталкивать друг друга!

Результат удивительный. Казалось бы, необычных сил следует ожидать между веществом и антивеществом, а получается наоборот – антигравитация возникает в веществе. Под действием гравитационных сил куча песка и куль муки должны разлететься, как при взрыве. Ничего похожего мы не наблюдаем, поэтому можно было бы предположить, что таких дальнодействующих гравитационных сил в природе вообще нет.

Вспомним, как много столетий назад Галилео Галилей изучал падение различных предметов с Пизанской башни, опровергая господствовавшее в то время мнение, что легкие тела падают быстрее тяжелых. И вот оказывается, что в вывод Галилея, возможно, придется внести уточнения!

Что касается зависимости силы от расстояния, то закон Ньютона с огромной точностью подтверждается астрономическими наблюдениями. Количественная мера притяжения, то есть гравитационная постоянная, измеряется в лаборатории, но с гораздо меньшей точностью. И вот уже некоторые экспериментальные исследования бросают тень сомнения на безупречную зависимость силы от расстояния! Умозрительные неклассические модели тяготения обсуждались теоретиками давно. В попытках уличить тяготение в отклонении от закона Ньютона во многих странах проводились тщательные измерения зависимости силы от расстояния. Оказалось, что в диапазоне от сантиметра до десяти метров величина гравитационной постоянной остается неизменной с точностью до десятой доли процента. Однако на иных – меньших и больших – расстояниях сохраняется принципиальная возможность того, что существуют отклонения от закона Ньютона.

Здесь ученых привлекли результаты многолетних измерений ускорения свободного падения тел в шахтах на разных глубинах. Такие измерения при условии хорошего знания геологических структур в окрестности шахты дают возможность независимого определения гравитационной константы, которая оказалась примерно на процент больше, чем измеренная в лаборатории с помощью весов Кавендиша. На этой основе была выдвинута гипотеза о существовании силы отталкивания с радиусом действия около двухсот метров, пропорциональной барионному заряду вещества. Эта гипотеза подверглась проверке данными классических экспериментальных работ. Обнаруженное эффектное согласие предсказаний гипотезы с опытом произвело в научном мире сенсацию и вызвало поток предложений новых путей проверки обнаруженного эффекта.

В теоретической физике сегодняшнего дня наиболее распространены модели, в которых все известные в природе силы возникают вследствие обмена между взаимодействующими телами некоторыми частицами – квантами действующего поля. Так, электромагнитные и гравитационные силы передаются частицами с нулевой массой покоя – фотонами и гравитонами с бесконечно большим радиусом действия, а внутриядерные сильное и слабое взаимодействия вызваны обменом массивными частицами – адронами и векторными бозонами, что делает такие силы чрезвычайно короткодействующими: лишь в пределах атомного ядра. «Пятая сила», вводимая обсуждаемой гипотезой по этой же схеме, предполагает существование частиц с исключительно малой, но все‑таки отличной от нуля массой покоя. Чтобы радиус взаимодействия измерялся сотнями метров, масса частицы должна быть на 15 порядков меньше массы электрона! Таких частиц физика не знает, но обнаружение «пятой силы» как раз и означало бы их открытие. Таким образом, закон тяготения оказывается в тесной связи с физикой элементарных частиц.

Чтобы проверить барионную гипотезу, нужно оценить ожидаемое на ее основе различие в притяжении тел разного состава и сравнить с данными наиболее точных экспериментов. Практически на опыте гораздо удобнее сравнивать не взаимное притяжение двух тел в зависимости от их состава, а притяжение пробных тел к очень большому третьему телу. Впервые такой опыт поставил Галилей, измеривший ускорение свободного падения на Земле тел разного состава и веса. Если справедлив закон Ньютона, то есть если вес тела строго пропорционален его массе, то ускорение свободного падения должно быть величиной постоянной. Это и было установлено Галилеем с точностью порядка долей процента.

Отладка Большого андронного коллайдера (ЦЕРН, Женева)

Для проверки новых теорий тяготения и моделирования антигравитационных эффектов требуются новые, более сложные опыты на сверхмощных ускорителях элементарных частиц. Серию таких экспериментов проводит международный коллектив физиков в Европейском центре ядерных исследований (Женева). Созданное там на Большом адронном коллайдере антивещество ученые хотят проверить на избыток веса, следующий из новых вариантов теории гравитации.

 

ОПЫТЫ ЭТВЕША

 

Поиск новых закономерностей гравитационного взаимодействия между материальными телами всегда был одним из интереснейших вопросов физики. Особенно много опытов было поставлено по определению силы тяготения между разнородными веществами. Здесь, несомненно, пальма первенства принадлежит венгерскому физику Роланду фон Этвешу. Еще без малого столетие назад Этвеш выполнил множество уникальных по точности экспериментов по проверке зависимости силы гравитационного притяжения от материала взаимодействующих тел. Он изучал притяжение подвешенных на тонких нитях грузов. Они крепились на нитях асимметрично их центрам, и даже очень‑очень слабое притяжение закручивало нити, а это можно определить, например, по перемещению светового зайчика, отброшенного на экран прикрепленным к нити крохотным зеркалом.

Прибор Этвеша настолько прост и в то же время точен, что во многих университетах его до сих пор используют для обучения будущих физиков тонкостям экспериментальной методики. В течение многих лет этот опыт считался одним из главных обоснований постулата о равенстве гравитационного заряда и массы тел.

Группа физиков заново проанализировала таблицы Этвеша – и, к своему удивлению, обнаружила… отчетливую зависимость изучавшегося эффекта от материала подвешенных на нитях грузов! По‑видимому, она не осталась секретом для самого Этвеша, но он посчитал ее какой‑то непонятной погрешностью эксперимента. Именно эти следы различий в ускорениях свободного падения и привлекли внимание авторов барионной гипотезы. Гипотеза взаимодействия через барионный заряд, по их мнению, дает ключ, с помощью которого можно попытаться разобраться в хаосе результатов Этвеша. Критический разбор барионной теории показал, что ожидаемое различие в притяжении тел разного состава может составлять тысячные доли процента, если расстояние между телами много меньше радиуса действия «пятой силы». Но в работах Этвеша пробные тела притягиваются к Земле, радиус которой в 30 тысяч раз больше предполагаемого значения радиуса действия. Это означает, что вклад в отталкивание вносят только ближайшие к пробным телам земные слои, в то время как притяжение вызывается всей массой Земли. Это обстоятельство дополнительно уменьшает ожидаемую разницу в ускорениях примерно в те самые 30 тысяч раз. Точный расчет эффекта практически невозможен, так как результат очень сильно зависит от карты распределения масс на поверхности и внутри Земли в окрестности пробных тел. Для модели Земли в виде однородного шара ожидаемый эффект в 16 раз меньше, чем полученный в опытах Этвеша.

Таким образом, дискуссия показала, что в опытах типа Этвеша (в их оригинальной постановке) ни знак эффекта, ни его величина не могут служить характерными признаками для проверки гипотезы барионного отталкивания. В пользу гипотезы говорит только само наличие эффекта и его закономерная связь с химическим составом пробных тел. Новая гипотеза прямым образом не вписывается в существующие наброски будущей объединенной теории. Поэтому экспериментальное открытие «пятой» силы привело бы к существенному пересмотру направлений поисков единой теории и, может быть, дало бы этим поискам новый решительный импульс. Физики‑теоретики, складывающие мозаику экспериментальных фактов в единую картину мироздания, с надеждой ждут недостающих фрагментов, которые, быть может, окажутся ключевыми. Но надежды эти сочетаются с естественным недоверием, потому что большие открытия происходят редко. Ближайшее будущее покажет, что привлекло внимание исследователей – случайная тень на монолитном фундаменте физики или след потайного хода вглубь.

Когда речь идет об открытии такого фундаментального явления, как антигравитация, нужно семь раз проверить, прежде чем поверить. Нужны новые сложнейшие эксперименты и наблюдения, которые помогли бы выявить другие стороны явления. Например, для движущихся тел антигравитация должна быть сильнее. На быстро вращающееся кольцо на поверхности Земли должна действовать подъемная сила. Чем больше его радиус, тем большую скорость имеет его вещество; как на карусели – чем дальше от центра, тем быстрее движение. И для больших скоростей вращения и больших радиусов антигравитация будет весьма значительной.

А может, кто‑то из молодых читателей станет физиком и придумает более остроумный и убедительный эксперимент? Сегодня над этой проблемой будущего размышляют во многих физических лабораториях мира.

Так, у американского писателя Р. Ф. Джоунса есть любопытное научно‑фантастическое произведение «Уровень шума». Желая получить в свои руки новое оружие, военные руководители одной из противоборствующих стран решили «подстегнуть» мысль своих ученых. Группе ученых – специалистов в самых разнообразных областях науки – достоверно сообщают, что в некоторой лаборатории сделано сенсационное открытие антигравитации, но, к несчастью, изобретатель погиб при пробной демонстрации и унес тайну своего детища. В действительности все это было вымышленным тщательно продуманным сценарием, созданным психологами. Милитаристы сознательно ввели исследователей в заблуждение, сообщив, что якобы, по неопровержимым данным разведки, противная сторона овладела секретом антигравитационных сил, а это означает: считавшаяся неразрешимой задача на самом деле имеет решение и теперь надо только его найти. Ясно, оно должно быть каким‑то совершенно необычным, парадоксальным, выходящим за рамки известных теорий, раз все они говорят, что это принципиально невозможно. Для убеждения ученых им предъявляют массу вещественных доказательств: библиотечку трудноразличимых обрывочных записей в разорванных и обгоревших лабораторных журналах, саму разрушенную лабораторию с массой совершенно искореженного и непонятного оборудования, противоречивые свидетельства очевидцев. Таким образом, вся художественно сконструированная ситуация основывается на вводе обширных пластов несистематизированной информации. Данные информационные посылки хаотически насыщены кажущимися случайными сведениями из разнообразных разделов науки и техники. Вообще говоря, искусственно моделируется ситуация «пересыщенного информационного раствора», основанная на развитии «квантовой» случайной психологии научного творчества.

И вот, будучи уверенными, что гипотетическое изобретение состоялось на самом деле, ученые уверенно берутся за поиск и восстановление несуществующих технических решений. И решение нашлось! Правда, это была не антигравитация, а новое отталкивающее поле, но это было уже неважно.

Итак, попытка ревизии давних экспериментов Этвеша не дала никакого определенного результата, причем общественное научное мнение явно склоняется к отрицательной оценке возможности поиска здесь новых сил отталкивания. Так может или не может существовать в природе таинственное антигравитирующее вещество, которое мы встречаем в романе Герберта Уэллса «Первые люди на Луне»? Здесь великий английский фантаст описывает полет на Луну исследователя Кейвора и писателя Бедфорда, от лица которого и ведется повествование. Кейвор с присущей ученому‑энтузиасту энергией и отрешенностью от каких‑либо меркантильных соображений стремится к открытию вещества, «непроницаемого для всех форм лучистой энергии». Благодаря этому фантастическому свойству, «преграждающему влияние притяжения», это вещество может защитить летательный аппарат от силы тяготения небесных тел.

Итак, Кейвор получает такое вещество (в результате случайного нарушения температурного режима и последующего сильнейшего взрыва!), Уэллсом указана даже дата этого фантастического открытия – 14 октября 1899 года. Чудесный материал получает название по имени своего создателя – «кейворит». С его помощью становится возможным космическое путешествие на Луну. В результате двое землян поднимаются ввысь и летят «так же быстро, как снаряд, пущенный в бесконечное космическое пространство». Перед ними открываются новые миры, они осваивают невесомость среди «безвоздушного, усеянного звездами неба». Затем, маневрируя кейворитовыми заслонками‑экранами, они опускаются на поверхность Луны…

Если бы имелось такое вещество, то с его помощью можно было бы не только легко путешествовать по звездным мирам, самоускоряясь до субсветовых скоростей, но и создать неиссякаемые источники энергии, воплотив мечту человечества о вечном двигателе. Но вот может ли, хотя бы в принципе, существовать такой природный элемент…

Крутильные весы Этвеша

Основную часть прибора составляет легкое горизонтальное коромысло, подвешенное на тонкой платиноиридиевой проволоке. К коромыслу прикреплены два грузика, один из которых расположен ниже другого. Наблюдая за шкалой в бинокль, можно обнаружить самый незначительный поворот коромысла.

 


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.