Столкновения элементарных частиц в конденсационной камере — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Столкновения элементарных частиц в конденсационной камере

2020-02-15 172
Столкновения элементарных частиц в конденсационной камере 0.00 из 5.00 0 оценок
Заказать работу

Молодой ученый Карл Андерсон под руководством знаменитого физика‑экспериментатора Роберта Милликена придумал установку для регистрации космических лучей, состоящую из мишени, помещенной в мощное магнитное поле. (Линии – следы пузырьков, образующихся вокруг атомов, возбужденных в результате пролета быстрых заряженных частиц.)===

 

ЛУЧИ ИЗ КОСМОСА

 

Следующее неожиданное открытие пришло из высокогорных лабораторий, изучающих состав космических лучей, бомбардирующих нашу планету. Там вскоре начали открывать всевозможные частицы, не имеющие ни малейшего отношения к классической атомной триаде – электрону, протону и нейтрону. В частности, были обнаружены совершенно немыслимые по своей природе античастицы.

Мир античастиц – своего рода зеркальное отражение знакомого нам мира. Масса античастицы в точности равняется массе частицы, которой она вроде бы соответствует, но все ее остальные характеристики противоположны прообразу. Например, электрон несет отрицательный электрический заряд, а парная ему античастица – позитрон («позитивный электрон») – положительный. У протона заряд положительный, а у антипротона – отрицательный. И так далее. При встрече частицы и ее античастицы происходит мгновенный микровзрыв (физики называют это явление взаимной аннигиляцией), и обе частицы прекращают свое существование, а их масса преобразуется в энергию, которая рассеивается в пространстве в виде вспышки фотонов и прочих сверхлегких частиц.

Существование античастиц было впервые предсказано теоретически и открыто «на кончике пера» знаменитым впоследствии английским ученым Полем Дираком.

Чтобы понять, как ведут себя частицы и античастицы при взаимодействии по Дираку, представьте себе ровное поле. Если взять лопату и вырыть в нем ямку, в поле появятся два объекта – собственно ямка и кучка грунта рядом с ней. Теперь представим, что кучка грунта – это обычная частица, а ямка, или «отсутствие кучки грунта», – античастица. Засыпьте ямку ранее извлеченным из нее грунтом – и не останется ни ямки, ни кучки (аналог процесса аннигиляции). И снова перед вами ровное поле.

Пока шло теоретизирование вокруг античастиц, экспериментатор К. Андерсон придумал их детектор, получивший название конденсационной камеры. Андерсон смог зарегистрировать частицы, возникающие в результате столкновения космических лучей с мишенью, по следам (трекам) из капелек конденсата, которые можно было сфотографировать и по полученным фотографиям изучать траектории движения частиц. Точно так же ведет себя высотный реактивный самолет, оставляя после себя в атмосфере инверсионный след.

По интенсивности трека, оставленного частицей, можно судить о ее массе, а по характеру отклонения ее траектории в магнитном поле – определить электрический заряд частицы. Вскоре удалось зарегистрировать ряд столкновений, в результате которых образовывались частицы с массой, равной массе электрона, однако отклонялись они под воздействием магнитного поля в противоположную сторону по сравнению с электроном и, следовательно, имели положительный электрический заряд. Так была впервые экспериментально выявлена античастица – позитрон. Все следующие за позитроном античастицы были экспериментально обнаружены уже в лабораторных условиях – на ускорителях. Сегодня физики‑экспериментаторы имеют возможность буквально штамповать их в нужных количествах для текущих экспериментов, и чем‑то из ряда вон выходящим античастицы давно не считаются.

Сейчас ученым известно четыре вида сил, определяющих рождение и жизнь элементарных частиц. Сильное взаимодействие элементарных частиц вызывает процессы, протекающие с наибольшей сравнительной интенсивностью, и приводит к возникновению самой сильной связи среди элементарных частиц. Именно оно обусловливает связь протонов и нейтронов в ядрах атомов. Электромагнитное взаимодействие обеспечивает связь ядер и электронов в атомах и молекулах вещества и тем самым определяет устойчивость окружающих нас вещей. Слабое взаимодействие элементарных частиц вызывает очень медленно протекающие процессы с элементарными частицами, в том числе радиоактивные распады. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия, но гораздо сильнее гравитационного. Гравитационное взаимодействие элементарных частиц является наиболее слабым из всех известных. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях дает чрезвычайно малые эффекты из‑за малости масс элементарных частиц.

На протяжении двух последних веков ученые, интересующиеся строением Вселенной, искали базовые строительные блоки, из которых состоит материя, – самые простые и неделимые составляющие материального мира. Атомная теория объяснила все многообразие химических веществ, постулировав существование ограниченного набора атомов так называемых химических элементов, объяснив природу всех остальных веществ через различные их сочетания. Таким образом, от сложности и многообразия на внешнем уровне ученым удалось перейти к простоте и упорядоченности на элементарном уровне.

Но простая картина атомного строения вещества вскоре столкнулась с серьезными проблемами. Прежде всего, по мере открытия все новых и новых химических элементов стали обнаруживаться странные закономерности в их поведении, которые, правда, удалось прояснить благодаря вводу в научный обиход периодической системы Менделеева. Однако представления о строении материи все равно сильно усложнились.

В начале прошлого столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц – нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующем уровне детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать всё новые и новые элементарные частицы.

В обычной ньютоновской физике любая сила – это либо притяжение, либо отталкивание, изменяющие характер движения тела. Но в современных квантовых теориях сила, действующая между элементарными частицами, интерпретируется несколько иначе. Считается, что сила возникает в результате того, что две частицы обмениваются третьей.

Приведем следующую аналогию. Представьте себе пару фигуристов на катке, едущих друг другу навстречу. Приблизившись, один из них вдруг выплескивает на другого ведро воды. Тот, кто выплеснул воду, от этого затормозит и изменит направление движения. И тот, кто получил порцию воды, также затормозит и изменит направление. Таким образом, «обменявшись» водой, оба фигуриста изменили направление движения. Согласно законам механики, это означает, что между фигуристами произошло силовое взаимодействие. В приведенном примере нетрудно увидеть, что эта сила возникла из‑за (или, как сказали бы физики, передалась «через» или «посредством») обмена водой.

Еще один пример касается двух лодочников, гребущих на встречных курсах. Один гребец перебрасывает массивный предмет партнеру, когда они проплывают друг мимо друга. В результате действия закона сохранения импульса, когда первый гребец сделал бросок, курс его лодки отклонился от прямолинейного в сторону, противоположную направлению броска, а когда второй гребец поймал предмет, его импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в сторону броска. Таким образом, в результате обмена предметом обе лодки изменили направление. Согласно механике Ньютона, это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение? Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса – переносчиком взаимодействия.

Оптимистичные ярлыки «универсальная теория», «теория всего сущего», «теория великого объединения», «окончательная теория» сегодня используются в отношении любой теории, пытающейся объединить все четыре взаимодействия, рассматривая их в качестве различных проявлений некоей единой и великой силы. Если бы это удалось, картина устройства мира упростилась бы до предела. Вся материя состояла бы лишь из кварков и лептонов, и между всеми этими частицами действовали бы силы единой природы. Уравнения, описывающие базовые взаимодействия между ними, были бы столь короткими и ясными, что уместились бы на почтовой открытке, объясняя при этом, по сути, основу всех без исключения процессов, наблюдаемых во Вселенной.

Здесь мы продолжим знакомить читателя с шедеврами научной популяризации из не столь уж и далекого прошлого и предлагаем небольшой отрывок из книги доктора химических наук Юрия Георгиевича Чиркова «Охота за кварками».

Кварки

Взаимодействие между кварками в составе элементарных частиц можно графически представить в виде диаграммы Фейнмана, названной так в честь американского физика Ричарда Фейнмана. На представленной диаграмме красный и синий кварки обмениваются глюоном и меняют свой цвет на цвет партнера по взаимодействию.

 

Юрий Георгиевич ЧИРКОВ

ОХОТА ЗА КВАРКАМИ

 

Слово «кварк» ввел в науку американский физик‑теоретик М. Гелл‑Ман. М. Гелл‑Мана, как и других физиков, беспокоила неразбериха и толчея, наблюдавшиеся в мире элементарных частиц.

И вот в 1963 году одновременно и независимо, находясь даже на разных континентах – один в Америке, другой в Европе, – теоретики американец М. Гелл‑Ман и австриец Г. Цвейг, чтобы устранить противоречие, высказали гипотезу о существовании трех фундаментальных субъядерных частиц, различными комбинациями которых и является большинство элементарных частиц.

Только в вопросе, как назвать эти «детальки» микромира, М. Гелл‑Ман и Г. Цвейг разошлись. Американец, большой, видимо, почитатель творений Д. Джойса, в поисках подходящего имени для новых частиц, возможно, начал перечитывать роман «Поминки по Финнегану» и наткнулся на то место, где дублинский трактирщик возомнил себя королем Марком, персонажем средневековой легенды.

Королю кажется, что его племянник Тристан украл у него жену, прекрасную Изольду. Марк преследует похитителя на корабле. В небе над парусами кружат чайки (которые, впрочем, может быть, вовсе не чайки, а судьи).

Они зловеще кричат‑каркают: «ТРИ КВАРКА ДЛЯ МИСТЕРА МАРКА!» Короля мучают кошмары, а чайки все повторяют:

«ТРИ КВАРКА, ТРИ КВАРКА, ТРИ КВАРКА…»

Слово «кварк» перекочевало со страниц романа Д. Джойса в мир элементарных частиц легко и естественно. Скорее всего в этом отрывке М. Гелл‑Мана привлекало то, что число кварков было именно три. Столько, сколько и требовала теория.

Пришлось по вкусу ученому и само слово «кварк» – звучное, диковинное, абсолютно не затасканное в других употреблениях.

Итак, М. Гелл‑Ман выбрал слово, и оно пришлось к месту. Г. Цвейг же был менее удачлив. Он назвал гипотетические субчастицы, претендующие на роль истинных кирпичиков праматерии, «тузами». Эта картежная терминология оказалась не столь привлекательна (тузов‑то четыре!), теперь о ней почти никто не вспоминает.

А кварки прижились. Удивляло и радовало, что всего трех кварков было достаточно, чтобы конструировать из них – словно это детские кубики – огромное число открытых к тому времени элементарных частиц.

И вновь раздались победные клики в стане физиков.

Казалось, наступила долгожданная пора, когда можно было «закрыть» большинство элементарных частиц за ненадобностью: ведь они были составными!

В 1965 году в журнале «Успехи физических наук» академик Я. Зельдович опубликовал статью «Классификация элементарных частиц „в изложении для пешеходов“». Уже само название подчеркивало: теперь тонкости микромира можно просто и ясно объяснить любому встречному, даже ребенку.

Академик писал в статье, что, возможно, физики добрались до атомизма нового типа, вскрыли, так сказать, новый пласт материи. Что создано нечто вроде новой таблицы Менделеева, только уже на субъядерном уровне.

Тон статьи был мажорный, радостный. «Современный физик имеет полное право повторить строки Ф. Тютчева», – писал Я. Зельдович и цитировал их:

 

Счастлив, кто посетил сей мир

В его минуты роковые:

Его призвали всеблагие,

Как собеседника на пир;

Он их высоких зрелищ зритель,

Он в их совет допущен был

И заживо, как небожитель,

Из чаши их бессмертье пил.

 

ГЛАВА ДЕВЯТАЯ

ЗАГАДКА ГРАВИТАЦИИ

 

Чтобы понимать физику, необходимо строгое равновесие в мыслях. Мы должны держать в голове все разнообразные утверждения и помнить обо всех связях, потому что законы часто простираются дальше своих доказательств. Надобность в этом отпадет только тогда, когда будут известны все законы.

Ричард Фейнман.

«Характер физических законов»

 

СЕНСАЦИОННЫЕ «ВОЛНЫ ВЕБЕРА»

 

В самом конце шестидесятых годов прошлого века профессор физики Мерилендского университета (США) Джозеф Вебер сообщил о сенсационных результатах проводимых им гравитационных экспериментов. Американский ученый со всей определенностью заявил в статье, опубликованной в одном из научных журналов, что ему удалось обнаружить волны тяготения, пришедшие на Землю из центральной области Млечного Пути. До того времени было предпринято множество попыток опытного подтверждения одного из главных следствий теории гравитации Эйнштейна, но ни одна из них не была успешной. Это даже породило сомнение в справедливости некоторых выводов общей теории относительности, так что сама возможность детектирования волн тяготения стала считаться далеко не очевидной.

Вспомним теорию всемирного тяготения Ньютона. Из нее следует, что между всеми телами во Вселенной существует сила взаимного притяжения. Для сравнительно небольших тел «человеческого размера» гравитационные силы между ними малосущественны или даже несущественны, но в космических масштабах они определяют всю структуру Мироздания. Собственно и жизнь в глобальном масштабе определяется гравитационным полем нашей планеты, которая вращается вокруг Солнца. Ну а Солнечная система кружит вокруг галактического центра, Млечный Путь – вокруг общего центра местного галактического скопления, а оно – вокруг гипотетического сверхскопления скоплений звездных островов. И все это происходит в силу действия гравитационных сил.

Мы уже знаем, что общая теория относительности описывает вселенское кружение тел как следствие искажения массой вещества самой «ткани» пространства‑времени. В общедоступной литературе по теории относительности обычно приводится упрощенная аналогия, в которой пространство наподобие эластичной пленки «прогибается» под действием масс небесных тел, образуя впадины и воронки. Например, модель Солнечной системы по Ньютону напоминает цепную карусель с планетами, удерживаемыми на своих орбитах цепями гравитации, а по Эйнштейну – это конусообразная чаша, продавленная Солнцем, наподобие кругового велотрека, в котором планеты‑велосипедисты кружатся вокруг впадины центральной арены. Так общая теория относительности вводит парадоксальное представление, что кажущаяся сила тяжести на самом деле является проявлением искривления пространства‑времени.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, – например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

Часто говорят, что гравитационные волны – это распространяющиеся в пространстве возмущения поля тяготения, ведь, согласно общей теории относительности, тяготение возникает из‑за искривления пространства‑времени. Волны тяготения проявляют себя как колебания гравитационного поля, поэтому их часто образно называют пространственно‑временной рябью.

Гравитационные волны были теоретически предсказаны еще Эйнштейном. В их существовании физики мало сомневаются, но они всё еще дожидаются своего первооткрывателя (рис. 21 цв. вкл.).


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.031 с.