Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Топ:
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Особенности труда и отдыха в условиях низких температур: К работам при низких температурах на открытом воздухе и в не отапливаемых помещениях допускаются лица не моложе 18 лет, прошедшие...
Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства...
Интересное:
Лечение прогрессирующих форм рака: Одним из наиболее важных достижений экспериментальной химиотерапии опухолей, начатой в 60-х и реализованной в 70-х годах, является...
Как мы говорим и как мы слушаем: общение можно сравнить с огромным зонтиком, под которым скрыто все...
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Дисциплины:
|
из
5.00
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
|
|
Косвенные измерения предполагают наличие известной функциональной связи между искомой величиной y и независимыми аргументами, которые могут быть найдены прямыми измерениям
| (8) |
Очевидно, погрешность в оценке y зависит от погрешности при измерении аргументов. При этом могут иметь место два случая: аргументы взаимонезависимы и взаимозависимы. Для независимых аргументов абсолютная погрешность Δy искомой величины близка к понятию полного дифференциала функции (8)
Запишем выражение для полного дифференциала функции y.

По определению полный дифференциал функции – это приращение функции, вызванное малым приращением ее аргументов.
Учитывая, что погрешность измерения аргументов всегда являются малыми величинами по сравнению с номинальными значениями аргументов можно заменить дифференциалы аргументов
на границы абсолютных погрешностей аргументов
, а дифференциал dy на абсолютную погрешность результата измерений 
| (9) |
В полученную формулу входят частные производные
, которые могут быть как положительными, так и отрицательными величинами. Опыт показывает, что при увеличении источников погрешностей (аргументы функции х1; х2…хn) результирующая погрешность, т.е. погрешность косвенного измерения, всегда увеличивается в связи с этим абсолютную погрешность косвенного измерения Δy определяют по формуле
=
| (10) |
По аналогичной формуле можно определить и среднеквадратичную погрешность косвенного измерения σу, поскольку ее размерность так же как и для абсолютной погрешности
совпадает с размерностью измеряемой величины
=
| (11) |
Применяя формулу (9), получим несколько простых правил оценивания, т.е. нахождения приближенного значения погрешности косвенного измерения [2 c 53].
Правило1. Погрешности в суммах или разностях. Если
измерены с погрешностями
и измеренные значения используются для вычисления суммы или разности
, то при нахождении погрешности косвенного измерения
суммируются абсолютные погрешности величин
и
без учёта их знака
,
Правило 2. Погрешности в произведениях и частных. Если измеренные значения
используются для вычисления
или
то суммируются относительные погрешности
, где
.
Если нужно найти абсолютную погрешность
, то она найдется по формуле

Правило 3. Измеренная величина умножается на постоянное число. Если x используется для вычисления произведения y=B
x, в котором В не имеет погрешности, то
Или для абсолютной погрешности
.
Правило 4. Возведение в степень. Если x используется для вычисления степени
, то
Или для абсолютных погрешностей 
Правило 5. Погрешность в произвольной функции одной переменной. Если x используется для вычисления функции y=f(x), то
. Или для абсолютных погрешностей
.
Вывод этих правил не приводится и может быть легко сделан самостоятельно. Использование правил позволяет получить оценку предельной погрешности косвенного измерения при числе аргументов n<5.
Пример. Производится косвенное измерение мощности рассеиваемой на резисторе сопротивлением R при протекании по нему тока I.Так как
, то применяя правило 2 и 4, получим
По определению
. Тогда для абсолютной погрешностей косвенного измерения мощности получим
Причем
могут быть найдены по классам точности амперметра и омметра.
|
|
|
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
© cyberpedia.su 2017-2026 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!