Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели. — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.

2017-12-21 262
Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели. 0.00 из 5.00 0 оценок
Заказать работу

Транс.задача формулируется следующим образом. Продукт, сосредоточенный в m пунктах производства в кол-ве a1, a2,...,am единиц, необходимо распределить между n пунктами потребления, которым необходимо b1,b2,..,bn единиц. Стоимость перевозки единицы продукта из i-го пункта пр-ва в j-ый пункт потр-ия равна cij. Необходимо составить план перевозок, при кот. запросы всех пунктов потребления были бы удовлетворены за счет имеющихся продуктов в пунктах пр-ва и общие транспортные расходы по доставке были бы минимальны.

Обозначим xij кол-во груза, планируемого к перевозке от i-го поставщика j-му потребителю.При балансе произ-ва и потр-я = математическая модель тр. задачи выглядит так: найти план перевозок Х=(хij), i=1,2,..,m; j=1,2,..,n, минимизирующий общую стоимость всех перевозок L= ,при условии что из любого пункта вывозится весь продукт: , i=1,2,..,m. И любому потребителю доставляется необходимое количество груза: j=1,2,..,n,.. и по смыслу задачи x11>0,..,xmn>0.

Если оно не выполнено, то задача не закрыта. Чтобы ее закрыть, нужно ввести фиктивного потребителя.

Преобразование открытой модели в закрытую. Если общий объем производства превышает объем, требуемый всем потребителям, то модель задачи открытая. Для превращения ее в закрытую вводим фиктивный пункт потребления с объемом потребления, равным разнице между объемом пр-ва и потр-я.

Постановка и математическая модель транспортной задачи, в которой суммарные запасы продукции меньше суммарных запросов на нее. Записать правила сведения такой модель к замкнутой задаче и записать полученную замкнутую модель транспортной задачи.

Если , то транспортная задача является незамкнутой. Пусть , т.е. суммарные запасы продукции меньше суммарных потребностей в ней и математическая модель открытой ТЗ имеет вид: найти наименьшее значение функции L= min при ограничениях: ,

, j=1,…,n,

= , i=1,…,m

, i=1,…,m; j=1,…,n.

Если безразлично, какой из потребителей недополучит продукцию, то ТЗ сводится к закрытой замкнутой модели путём введения дополнительного фиктивного (m+1)-ого поставщика с запасом продукции, равным = - . При этом значения тарифов полагаем равными нулю, что обеспечивает равенство целевых функций исходных и соответствующих им вспомогательных задач. В итоге получаем замкнутую модель ТЗ. Математическая модель ТЗ: найти план перевозок X=( ), i=1,2,…,m; j=1,2,…,n, минимизирующий общую стоимость всех перевозок L= min при условии, что из любого пункта производства вывозится весь продукт: = , i=1,2,…,m и любому потребителю доставляется необходимое количество груза: , j=1,2,…,n, причём по смыслу задачи Решаем её, находим оптимальный план. При этом значения в решении вспомогательной задачи будут обозначать величину неудовлетворённого спроса j-ого потребителя.

 

Постановка и математическая модель транспортной задачи, в которой суммарные запасы продукции больше суммарных запросов на нее. Записать правила сведения такой задачи к замкнутой и записать полученную замкнутую модель транспортной задачи.

Пусть , т е суммарные запасы продукции больше суммарных потребностей в ней. Если безразлично, у кого из поставщиков останутся излишки продукции, то решение такой несбалансированной задачи сводится к решению замкнутой транспортной задачи путем введения дополнительного фиктивного (n-1)го потребителя, запросы которого составляют

 

Значение сi, n+1 полагаем равным нулю и решаем вспомогательную задачу с n+1 потребителем и m поставщиками. При этом продукция xi,n+1 , планируемая для перевозки к фиктивному потребителю, остается на i-м складе.

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.