Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Состав, строение, свойства и функции клеточных мембран.

2017-08-11 1052
Состав, строение, свойства и функции клеточных мембран. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

ЦИТОПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Цитоплазматическая мембрана или плазмалемма (лат. membrana – кожица, плёнка) – тончайшая пленка (7– 10нм), отграничивающая внутреннее содержимое клетки от окружающей среды, видна только в электронный микроскоп.

По химической организации плазмалемма представляет липопротеидный комплекс – молекулы липидов и белков.

Её основу составляет липидный бислой, состоящий из фосфолипидов, кроме этого, в мембранах присутствуют гликолипиды и холестерол. Все они обладают свойством амфипатричности, т.е. у них есть гидрофильные («любящие воду») и гидрофобные («боящиеся воды») концы. Гидрофильные полярные «головки» липидных молекул (фосфатная группа) обращены кнаружи мембраны, а гидрофобные неполярные «хвосты» (остатки жирных кислот) – друг к другу, что создает биполярный липидный слой. Молекулы липидов подвижны и могут перемещаться в своем монослое или редко – из одного монослоя в другой. Монослои липидов обладают ассиметричностью, т. е. отличаются по составу липидов, что придает специфичность мембранам даже в пределах одной клетки. Бислой липидов может находиться в состоянии жидкого или твердого кристалла.

Вторым обязательным компонентом плазмалеммы являются белки. Многие мембранные белки способны перемещаться в плоскости мембраны или вращаться вокруг своей оси, но не могут переходить с одной стороны бислоя липидов на другой.

Липиды обеспечивают основные структурные особенности мембраны, а белки – её функции. Функции мембранных белков различны: поддержание структуры мембран, получение и преобразование сигналов из окружающей среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах.

Различают несколько моделей строения цитоплазматической мембраны.

①. БУТЕРБРОДНАЯ МОДЕЛЬ (белкилипидыбелки)

В 1935г. английские ученые Даниэли и Даусон высказали идею о послойном расположении в мембранемолекул белков (темные слои в электронном микроскопе), которые залегают снаружи, и молекул липидов (светлый слой) – внутри. Длительное время существовало представление о едином трехслойном строении всех биологических мембран.

При детальном изучении мембраны с помощью электронного микроскопа оказалось, что светлый слой на самом деле представлен двумя слоями фосфолипидов – это билипидный слой, причем водорастворимые его участки – гидрофильные головки направлены к белковому слою, а нерастворимые (остатки жирных кислот) – гидрофобные хвосты обращены друг к другу.

Однако уже с середины 60-х годов начали накапливаться факты против унитарной «бутербродной» модели. В частности, по одним данным, не все мембраны имели четкую трехслойную структуру при электронно-микроскопическом исследовании; по другим – значительная часть мембранных белков имела глобулярную структуру, а не ламеллярную, как в постулируемой модели. Наконец, среди многочисленных моделей мембран, предложенных в середине 60-х годов, начали выделяться те, в которых доказывалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками.

②. ЖИДКОСТНО-МОЗАИЧНАЯ МОДЕЛЬ

В 1972г. Сингер и Николсон описали модель мембраны, которая получила широкое признание. Согласно этой модели молекулы белков не образуют сплошного слоя, а погружены в биполярный липидный слой на разную глубину в виде мозаики. Глобулы белковых молекул, подобно айсбергам, погружены в «океан» липидов: одни находятся на поверхности билипидного слоя – периферические белки, другие погружаются в него наполовину – полуинтегральные белки, третьи – интегральные белки – пронизывают его насквозь, формируя гидрофильные поры. Периферические белки, находясь на поверхности билипидного слоя, связаны с головками липидных молекул электростатическими взаимодействиями. Но они никогда не образуют сплошного слоя и, по сути дела, не являются белками собственно мембраны, а, скорее, связывают ее с надмембранной или субмембранной системой поверхностного аппарата клетки.

Основную роль в организации собственно мембраны играют интегральные и полуинтегральные (трансмембранные) белки, имеющие глобулярную структуру и связанные с липидной фазой гидрофильно-гидрофобными взаимодействиями. Молекулы белков, как и липиды, обладают амфипатричностью и своими гидрофобными участками взаимодействуют с гидрофобными хвостами билипидного слоя, а гидрофильные участки обращены к водной среде и образуют с водой водородные связи.

③. БЕЛКОВО-КРИСТАЛЛИЧЕСКАЯ МОДЕЛЬ (модель липопротеинового коврика)

Мембраны образованы переплетением липидных и белковых молекул, объединяющихся между собой на основе гидрофильно-гидрофобных взаимодействий.

Белковые молекулы, как штифты, пронизывают слой липидов и выполняют в составе мембраны функцию каркаса. После обработки мембраны жирорастворимыми веществами белковый каркас сохраняется, что доказывает взаимосвязь между молекулами белков в мембране. По-видимому, эта модель реализуется лишь в отдельных специальных участках некоторых мембран, где требуется жесткая структура и тесные стабильные взаимоотношения между липидами и белками (например, в области расположения фермента Na-К –АТФ-азы).

Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.

СВОЙСТВА МЕМБРАНЫ

1. Способность к самосборке. После разрушающих воздействий мембрана способна восстановить свою структуру, т.к. молекулы липидов на основе своих физико-химических свойств собираются в биполярный слой, в который затем встраиваются молекулы белков.

2. Текучесть. Мембрана не является жесткой структурой, большая часть входящих в её состав белков и липидов может перемещаться в плоскости мембраны, они постоянно флюктуируют за счет вращательных и колебательных движений. Это определяет большую скорость протекания химических реакций на мембране.

3. Полупроницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определённые молекулы и ионы растворённых веществ. Это обеспечивает поддержание ионного и молекулярного состава клетки.

4. Мембрана не имеет свободных концов Она всегда замыкается в пузырьки.

5. Асимметричность. Состав наружного и внутреннего слоев как белков, так и липидов различен.

6. Полярность. Внешняя сторона мембраны несёт положительный заряд, а внутренняя – отрицательный.

ФУНКЦИИ МЕМБРАНЫ

1) Барьерная – плазмалемма отграничивает цитоплазму и ядро от внешней среды. Кроме того, мембрана делит внутреннее содержимое клетки на отсеки (компартменты), в которых зачастую протекают противоположные биохимические реакции.

2) Рецепторная (сигнальная) – благодаря важному свойству белковых молекул – денатурации, мембрана способна улавливать различные изменения в окружающей среде. Так, при воздействии на мембрану клетки различных средовых факторов (физических, химических, биологических) белки, входящие в ее состав, меняют свою пространственную конфигурацию, что служит своеобразным сигналом для клетки. Это обеспечивает связь с внешней средой, распознавание клеток и их ориентацию при формировании тканей и т.д. С этой функцией связана деятельность различных регуляторных систем и формирование иммунного ответа.

3) Обменная – в состав мембраны входят не только структурные белки, которые образуют ее, но и ферментативные, являющиеся биологическими катализаторами. Они располагаются на мембране в виде «каталитического конвейера» и определяют интенсивность и направленность реакций метаболизма.

4) Транспортная – молекулы веществ, диаметр которых не превышает 50 нм, могут проникать путем пассивного и активного транспорта через поры в структуре мембраны. Крупные вещества попадают в клетку путем эндоцитоза (транспорт в мембранной упаковке), требующего затраты энергии. Его разновидностями являются фаго- и пиноцитоз.

Пассивный транспорт – вид транспорта, в котором перенос веществ осуществляется по градиенту химической или электрохимической концентрации без затраты энергии АТФ. Выделяют два вида пассивного транспорта: простая и облегченная диффузия. Диффузия – это перенос ионов или молекул из зоны более высокой их концентрации в зону более низкой концентрации, т.е. по градиенту.

Простая диффузия – ионы солей и вода проникают через трансмембранные белки или жирорастворимые вещества по градиенту концентрации.

Облегченная диффузия – специфические белки-переносчики связывают вещество и переносят его через мембрану по принципу «пинг-понга». Таким способом через мембрану проходят сахара и аминокислоты. Скорость такого транспорта значительно выше, чем простой диффузии. Кроме белков- переносчиков, в облегченной диффузии принимают участие некоторые антибиотики – например, грамитидин и ваномицин. Поскольку они обеспечивают транспорт ионов, их называют ионофорами.

Активный транспорт – это вид транспорта, при котором расходуется энергия АТФ, он идёт против градиента концентрации. В нем принимают участие ферменты АТФ-азы. В наружной клеточной мембране находятся АТФ-азы, которые осуществляют перенос ионов против градиента концентрации, это явление называется ионным насосом. Примером является натрий-калиевый насос. В норме в клетке больше ионов калия, во внешней среде – ионов натрия. Поэтому по законам простой диффузии калий стремится из клетки, а натрий – в клетку. В противовес этому натрий-калиевый насос накачивает против градиента концентрации в клетку ионы калия, а ионы натрия выносит во внешнюю среду. Это позволяет поддерживать постоянство ионного состава в клетке и её жизнеспособность. В животной клетке одна треть АТФ расходуется на работу натрий-калиевого насоса.

Разновидностью активного транспорта является транспорт в мембранной упаковке – эндоцитоз. Крупные молекулы биополимеров не могут проникать через мембрану, они поступают в клетку в мембранной упаковке. Различают фагоцитоз и пиноцитоз. Фагоцитоз – захват клеткой твердых частиц, пиноцитоз – жидких частиц. В этих процессах выделяют стадии:

1) узнавание рецепторами мембраны вещества; 2) впячивание (инвагинация) мембраны с образованием везикулы (пузырька); 3) отрыв пузырька от мембраны, слияние его с первичной лизосомой и восстановление целостности мембраны; 4) выделение непереваренного материала из клетки (экзоцитоз).

Эндоцитоз является способом питания для простейших. У млекопитающих и человека имеется ретикуло-гистио-эндотелиальная система клеток, способная к эндоцитозу – это лейкоциты, макрофаги, клетки Купфера в печени.


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.