Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы.

2017-07-25 620
Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Термин "липиды" объединяет вещества, обладающие общим физическим свойством - гидрофобностью, т.е. нерастворимостью в воде. По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.

Липиды представляют собой большую группу природных гидрофобных соединений с разнообразной структурой и биологическими функциями, объединяемые в единую категорию по следующим трем признакам: 1) нерастворимость в воде и растворимость в неполярных растворителях; 2) нахождение в природе в виде настоящих или потенциальных сложных эфиров высших жирных кислот; 3) присутствие во всех живых организмах.

Биологические функции липидов:

1. структурная;

2. энергетическая;

3. защитная;

4. регуляторная.

По функциям липиды подразделяют на:

а) резервные липиды (жиры жировых депо); их количество и состав непостоянны и зависят от режима питания и физического состояния организма;

б) структурные липиды; их количество и состав в организме строго постоянны, генетически обусловлены и в норме, как правило, не зависят от режима питания и функционального состояния организма.

Классификация липидов

2. ВЫСШИЕ ЖИРНЫЕ КИСЛОТЫ, СТРОЕНИЕ, СВОЙСТВА, НОМЕНКЛАТУРА.

Высшие жирные кислоты — одноосновные карбоновые кислоты с длинной углеродной цепью, содержащей обычно четное число атомов углерода (от 12 до 24). Высшие жирные кислоты могут быть насыщенными и ненасыщенными.

Название кислоты Cn: m ω Структура кислот
  Насыщенные    
Миристиновая 14:0   СН3-(СН2)12СООН
Пальмитиновая 16:0   CH3-(CH2)14COOH
Стеариновая 18:0   СН3-(СН2)16СООН
  Моноеновые    
Пальмитоолеиновая 16:1Δ9   СН3-(СН2)5СН=СН-(СН2)7-СООН
Олеиновая 18:1Δ9   СН3-(СН2)7СН=СН-(СН2)7СООН
  Полиеновые    
Линолевая* 18:2Δ9,12   СН3-(СН2)4-СН=СН-СН2-СН=СН-(СН2)7-СООН
α-Линоленовая* 18:3Δ9, 12, 15   СН3-СН2-СН=СН-СН2-СН=СН-СН2-СН=СН-(СН2)7-СООН
Эйкозатриеновая 20:3 Δ8, 11, 14    
Арахидоновая** 20:4Δ5, 8, 11, 14   СН3-(СН2)3-(СН2-СН=СН)4(СН2)3СООН
Эйкозапентаеновая (тимнодоновая) 20:5Δ5,8, 11,14, 17   СН3-СН2-(СН=СН-СН2)5(СН2)2СООН
Докозопентаеновая (клупанодоновая) 22:5Δ7, 10, 13, 16,19    
Докозагексаеновая 22:6Δ4, 7, 10, 13, 16,19    

Жирные кислоты липидов человека представляют собой углеводородную неразветвлённую цепь, на одном конце которой находится карбоксильная группа, а на другом - метальная группа (ω-углеродный атом). Большинство жирных кислот в организме содержат чётное число атомов углерода - от 16 до 20. Жирные кислоты без двойных связей, называют насыщенными. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Жирные кислоты, содержащие двойные связи, называют ненасыщенными. Ненасыщенные жирные кислоты представлены моноеновыми (с 1ой двойной связью) и полиеновыми (с 2мя и большим числом двойных связей). Если в составе жирной кислоты содержатся две и более двойных связей, то они располагаются через СН2-группу. Имеется несколько способов изображения структуры жирных кислот. При обозначении жирной кислоты цифровым символом общее количество атомов углерода представлено цифрой до двоеточия, после двоеточия указывают число двойных связей. Позицию двойной связи обозначают знаком Δ, после которого указывают номер атома углерода, ближайшего к карбоксилу, у которого находится двойная связь. Например, С18:1Δ9 означает, что жирная кислота содержит 18 атомов углерода и одну двойную связь у 9-го атома углерода, считая от углеродного атома карбоксильной группы. Позиция двойной связи может быть указана и другим способом - по расположению первой двойной связи, считая от метального со-атома углерода жирной кислоты. Например, линоле-вая кислота может быть обозначена как С18:2Δ9,12 или С18:2ω-6. По положению первой двойной связи от метального углерода полиеновые жирные кислоты делят на семейства ω-3 и ω-6.

Ацилглицеролы - сложные эфиры трёхатомного спирта глицерола и жирных кислот. Глицерол может быть связан с одной, двумя или тремя жирными кислотами, соответственно образуя моно-, ди- или триацилглицеролы. Основную массу лигщдов в организме человека составляют триацилглицеролы - жиры. У человека с массой тела 70 кг в норме содержится до 10 кг жиров. Они запасаются в жировых клетках -- адипоцитах и используются при голодании как источники энергии.

Моно- и диацилглицеролы образуются на промежуточных этапах распада и синтеза триацил-глицеролов. Атомы углерода в глицероле по-разному ориентированы в пространстве, поэтому ферменты различают их и специфически присоединяют жирные кислоты у первого, второго и третьего атомов углерода.

Номенклатура и состав природных триацилглицеролов. В молекуле природного жира содержатся разные жирные кислоты. В позициях 1 и 3 находятся более насыщенные жирные кислоты, а во второй позиции - полиеновая кислота. В названии триацилглицерола перечисляются названия радикалов жирных кислот, начиная с первого углеродного атома глицерола, например пальмитоил-линоленоил-олеоилглицерол.

Жиры, содержащие больше насыщенных кислот, являются твёрдыми (говяжий, бараний жиры), а содержащие большое ненасыщенных кислот - жидкими. Жидкие жиры или масла обычно имеют растительное происхождение.

Из животных пищевых жиров наиболее насыщен бараний жир, практически не содержит незаменимых кислот. Ценными пищевыми жирами являются рыбий жир и растительные масла, содержащие незаменимые жирные кислоты. В организме рыб полиеновые жирные кислоты ω-3 и ω-6 также не синтезируются, рыбы получают их с пищей (водоросли, планктон).

 

Переваривание липидов пищи. Особенности переваривания липидов в детском возрасте. Всасывание продуктов переваривания. Нарушения переваривания и всасывания липидов. Ресинтез триацилглицеридов в энтероцитах. Образование хиломикронов и транспорт жиров. Липротеинлипаза, ее роль.

С пищей в организм ежедневно поступает от 80 до 150 г липидов. Основную массу составляют жиры, наряду с глюкозой служащие главными источниками энергии. Хотя калорийность жиров значительно выше, чем углеводов (9 по сравнению с 4,7 ккал/моль), при рациональном питании жиры обеспечивают не более 30% от общего количества калорий, поступающих с пищей. Жидкие жиры (масла) содержат в своём составе полиеновые жирные кислоты, которые не синтезируются в организме; поэтому жидкие жиры должны составлять не менее одной трети жиров пищи. С липидами в организм поступают и жирорастворимые витамины A, D, Е, К. Переваривание липидов пищи происходит в кишечнике. Основные продукты гидролиза (жирные кислоты и 2-моноацилглицеролы) после всасывания подвергаются ресинтезу и последующей упаковке в хиломикроны (ХМ) в клетках слизистой оболочки кишечника.

А. Эмульгирование жиров

Жиры составляют до 90% липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием "липазы языка". Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1-2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

Так как жиры - нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот (рис. 8-11). Жёлчные кислоты синтезируются в печени из холестерола и сек-ретируются в жёлчный пузырь. Содержимое жёлчного пузыря - жёлчь. Это вязкая жёлто-зелёная жидкость, содержащая главным образом жёлчные кислоты; в небольшом количестве имеются фосфолипиды и холестерол. Жёлчные кислоты представляют собой в основном конъюгированные жёлчные кислоты: таурохолевую, гликохолевую и другие (см. выше рис. 8-10). После приёма жирной пищи жёлчный пузырь сокращается и жёлчь изливается в просвет двенадцатиперстной кишки. Жёлчные кислоты действуют как детергенты, располагаясь на поверхности капель жира и снижая поверхностное натяжение. В результате крупные капли жира распадаются на множество мелких, т.е. происходит эмульгирование жира. Эмульгирование приводит к увеличению площади поверхности раздела фаз жир/вода, что ускоряет гидролиз жира панкреатической липазой. Эмульгированию способствует и перистальтика кишечника.

Б. Гормоны, активирующие
переваривание жиров

При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин - гормон пептидной природы, стимулирующий секрецию бикарбоната (НСО3-) в сок поджелудочной железы.

В. Переваривание жиров
панкреатической липазой

Переваривание жиров - гидролиз жиров панкреатической липазой. Оптимальное значение рН для панкреатической липазы ≈8 достигается путём нейтрализации кислого содержимого, поступающего из желудка, бикарбонатом, выделяющимся в составе сока поджелудочной железы:

Н+ + НСО3- → Н2СО3 → Н2О + СО2 ↑.

Выделяющийся углекислый газ способствует дополнительному перемешиванию содержимого тонкой кишки.

Панкреатическая липаза выделяется в полость тонкой кишки из поджелудочной железы вместе с белком колипазой. Колипаза попадает в полость кишечника в неактивном виде и частичным протеолизом под действием трипсина превращается в активную форму. Колипаза своим гидрофобным доменом связывается с поверхностью мицеллы эмульгированного жира. Другая часть молекулы способствует формированию такой конформации панкреатической липазы, при которой активный центр фермента максимально приближен к своим субстратам - молекулам жиров (рис. 8-12), поэтому скорость реакции гидролиза жира резко возрастает.

Панкреатическая липаза гидролизует жиры преимущественно в положениях 1 и 3, поэтому основными продуктами гидролиза являются свободные жирные кислоты и 2-моноацилглицеролы (β-моноацилглицеролы).

Молекулы 2-моноацилглицеролов также обладают детергентными свойствами и способствуют эмульгированию жира.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.