Ингибиторы цепи транспорта электронов и окислительного фосфорилирования — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Ингибиторы цепи транспорта электронов и окислительного фосфорилирования

2017-07-25 560
Ингибиторы цепи транспорта электронов и окислительного фосфорилирования 0.00 из 5.00 0 оценок
Заказать работу

Ингибиторы, блокирующие дыхательную цепь, действуют в определенных местах, препятствуя работе дыхательных ферментов (KCN, барбитураты, ротенон). Существуют также вещества, ингибирующие окислительное фосфорилирование.

 

 

47. Строение митохондрий и структурная организация дыхательной цепи. НАД-зависимые и флавиновые дегидрогеназы. Комплексы дыхательной цепи: НАДН-дегидрогеназа, убихинол-дегидрогеназа (цитохром C редуктаза), цитохром C оксидаза, особенности состава, строения и функций.

Митохондрии обычно имеют форму цилиндра с закругленными концами, длиной 1-4 мкм и поперечником 0,3-0,7 мкм. Однако в разных клетках размеры и форма митохондрий могут быть существенно различными. Количество митохондрий в разных клетках также различно; гепатоцит содержит около 2000 митохондрий.

Митохондрии имеют внешнюю и внутреннюю мембраны. Внутренняя мембрана образует многочисленные складки — кристы. Содержимое пространства, ограничиваемого внутренней мембраной, называют матриксом.

Внешняя и внутренняя мембраны сильно различаются по составу, свойствам и функциям. Внешняя мембрана свободно проницаема для молекул с молекулярной массой примерно до 5000, в то время как проницаемость внутренней мембраны ограничена и избирательна: она определяется наличием специфических транспортных систем. Вследствие этого химический состав межмембранного пространства мало отличается от состава цитозоля, тогда как у матрикса он существенно иной.

Никотинамидзависимые дегидрогеназы содержат в качестве коферментов NAD+ или NADP+. NAD+ и NADP+ - производные витамина PP. Эти коферменты входят в состав активных центров дегидрогеназ, но могут обратимо диссоциировать из комплекса с апоферментами и включаются в состав фермента в ходе реакции. Субстраты NAD- и NADP-зависимых дегидрогеназ находятся в матриксе митохондрий и в цитозоле. Рабочей частью никотинамидных коферментов служит никотинамид.

Большинство дегидрогеназ, поставляющих электроны в ЦПЭ, содержат NAD+. Они катализируют реакции типа:

R-CHOH-R1 + NAD+↔ R-CO-R1 + NADH + Н+.

Таким образом, NAD+, присоединяя протоны и электроны от различных субстратов, служит главным коллектором энергии окисляемых веществ и главным источником электронов, обладающих высоким энергетическим потенциалом, для ЦПЭ.

NADPH не является непосредственным донором электронов в ЦПЭ, а используется почти исключительно в восстановительных биосинтезах. Однако возможно включение электронов с NADPH в ЦПЭ благодаря действию пиридиннуклеотид трансгидрогеназы, катализирующей реакцию:

NADPH + NAD+ ↔ NADP+ + NADH.

Флавиновые дегидрогеназы содержат в качестве коферментов FAD или FMN. Эти коферменты образуются в организме человека из витамина В2. Флавиновые коферменты прочно связаны с апоферментами. Рабочей частью FAD и FMN служит изоаллоксазиновая сопряжённая циклическая система.

FAD служит акцептором электронов от многих субстратов в реакциях типа:

R-CH2-CH2-R1 + Е (FAD) ↔ R-CH=CH-R1 + Е (FADH2),

где Е - белковая часть фермента.

Большинство FAD-зависимых дегидрогеназ - растворимые белки, локализованные в матриксе митохондрий. Исключение составляет сукцинат-дегидрогеназа, находящаяся во внутренней мембране митохондрий. К FMN-содержащим ферментам принадлежит NADH-дегидрогеназа, которая также локализована во внутренней мембране митохондрий; она окисляет NADH, образующийся в митохондриальном матриксе.

2. Цепь переноса электронов от NADH
и FADH2 на кислород

Перенос электронов от NADH к О2 включает ряд переносчиков, которые локализованы во внутренней мембране митохондрий. За исключением убихинона и цитохрома С, это сложные белковые комплексы.

NADH-дегидрогеназа (NADH-Q-редуктаза, комплекс I) состоит из нескольких полипептидных цепей. Роль простетической группы играет FMN. Единственный субстрат фермента - NADH, с которого 2 электрона и протон переносятся на FMN с образованием FMNH2. Второй протон поглощается из матрикса. Реакция протекает по уравнению:

NADH + Н+ + Е (FMN) → NAD+ + Е (FMNH2)

С FMNH2 электроны переносятся затем на ряд железо-серных белков (FeS), играющих роль второй простетической группы в молекуле NADH-дегидрогеназы. Атомы железа в этих белках (негемовое железо) собраны в несколько групп, так называемых железо-серных центров. FeS-центры входят в состав многих белков (флавопротеинов, цитохромов), участвующих в окислительно-восстановительных реакциях. Известны 3 типа FeS-центров (FeS, Fe2S2, Fe4S4), в которых атом железа связан с атомом серы остатков цистеина или неорганической серы.

NADH-дегидрогеназа содержит несколько центров типа Fe2S2 и Fe4S4 Атомы железа в таких центрах могут принимать и отдавать электроны поочерёдно, переходя в ферро- (Fe2+) и ферри- (Fe3+) состояния. От железо-серных центров электроны переносятся на кофермент Q (убихинон).

Обозначение этого жирорастворимого хинона происходит от первой буквы английского названия хинона (quinone), а название убихинон отражает его широкую распространённость в природе (ubiquitous - вездесущий). Молекулы убихинона в зависимости от источника, из которого они выделены, различаются длиной углеводородной цепи, которая у млекопитающих содержит 10 изопреноидных звеньев и обозначается как Q10. В процессе переноса электронов с NADH-дегидрогеназы через FeS на убихинон он обратимо превращается в гидрохинон. Убихинон выполняет коллекторную функцию, присоединяя электроны от NADH-дегидрогеназы и других флавинзависимых дегидрогеназ, в частности, от сукцинат-дегидрогеназы. Убихинон участвует в реакциях типа:

Е (FMNH2) + Q → Е (FMN) + QH2.

Цитохромы или гемопротеины присутствуют во всех типах организмов. В клетках эукариотов они локализованы в митохондриальных мембранах и в ЭР. Известно около 30 различных цитохромов. Все цитохромы в качестве простетической группы содержат гем. Их многообразие обусловлено:

различием боковых цепей в структуре тема;

различием в структуре полипептидных цепей;

различием в способе связи полипептидных цепей с гемом.

В зависимости от способности поглощать свет в определённой части спектра все цитохромы делят на группы а, b, с. Внутри каждой группы отдельные виды с уникальными спектральными свойствами обозначают цифровыми индексами (b, b1, b2 и т.д.).

Структурные особенности разных видов цитохромов определяют различие в их окислительно-восстановительных потенциалах. В ЦПЭ участвуют 5 типов цитохромов (а, а3, b, с, с1). За исключением цитохрома с, все цитохромы находятся во внутренней мембране митохондрий в виде сложных белковых комплексов.

2-дегидрогеназа (коэнзим Q-цитохром с-ре-уктаза, комплекс III) состоит из 2 типов цитохромов (b1 и b2) и цитохрома с1. QН2-дегидрогеназа переносит электроны от убихинола на цитохром с. Внутри комплекса III электроны передаются от цитохромов b на FeS-центры, на цитохром с1, а затем на цитохром с. Группы тема, подобно FeS-центрам, переносят только по одному электрону. Таким образом, от молекулы QH2 2 электрона переносятся на 2 молекулы цитохрома b. В качестве промежуточного продукта в этих реакциях переноса электронов возможно образование свободного радикала се-михинона. В цитохромах типа b гем не связан ковалентно с белком, а в цитохромах с1 и с он присоединяется к белку при помощи тиоэфирных связей. Эти связи образуются путём присоединения 2 цистеиновых остатков к винильным группам гема.

Цитохром с - периферический водорастворимый мембранный белок с молекулярной массой 12 500 Д, имеющий одну полипептидную цепь из 100 аминокислотных остатков, и молекулу гема, ковалентно связанную с полипептидом.

Цитохромоксидаза (комплекс IV) состоит из 2 цитохромов типа аа3 каждый из которых имеет центр связывания с кислородом. Цитохромы а и а3 имеют характерную железопорфириновую простетическую группу, называемую гемом А и отличающуюся от гема цитохромов с и c1 (рис. 6-10). Он содержит формильную группу вместо одной из метальных групп и углеводородную цепь вместо одной из винильных групп.

Другая особенность комплекса а-а3 - наличие в нём ионов меди, связанных с белковой частью в так называемых CuA-центрах. Перенос электронов комплексом а-а3 включает реакции:

Cu+ ↔ Cu2+ + e,
Fe2+ ↔ Fe3+ + e.

Комплекс цитохромов а-а3 непосредственно реагирует с молекулярным кислородом. Некоторые характеристики компонентов ЦПЭ приведены в табл. 6-4.

Название компонента Простетическая группа Донор e Акцептор е
NADH-дегидрогеназа, комплекс I FMN, FeS NADH KoQ
Коэнзим Q, убихинон   NADH Комплекс III (bc1)
рН2-дегидрогеназа, комплекс III FeS, гем b1 (562), гемb2(566),гемм с1 QH2 Цитохром с
Цитохром с Гем с Комплекс III Комплекс IV
Цитохромоксидаза, комплекс IV Гем А Сu2+ Цитохром с O2
Сукцинатдегидрогеназа, комплекс II FAD, FeS Сукцинат KoQ

 


 

48. Окислительное фосфорилирование, сущность процесса, схема, субстраты, коэффициент Р/О. Трансмембранный электрохимический потенциал как промежуточная форма энергии при окислительном фосфорилировании. Теория Митчелла. Н+-АТФ-синтаза: роль, локализация, строение, механизм синтеза АТФ.

Электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается снижением свободной энергии.

Снижение свободной энергии происходит на каждом этапе ЦПЭ, и энергия электронов выделяется порциями.

Вместе с тем в дыхательной цепи можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии.

Изменение свободной энергии при переносе электронов по ЦПЭ. E-FMN - комплекс I; E-FAD - комплекс II; b-с1 - комплекс III; aa3 - комплекс IV.

Эти этапы способны обеспечить энергией синтез АТФ, так как количество выделяющейся свободной энергии приблизительно равно энергии, необходимой для синтеза АТФ из АДФ и фосфата.

Первый процесс - перенос электронов от восстановленных коферментов NADH и FADH2 через ЦПЭ на кислород - экзергонический. Например:

NADH + Н+ +1/2 O2 → NAD+ + H2O + 52 ккал/моль(≈220 кДж/моль). (1)

Второй процесс - фосфорилирование АДФ, или синтез АТФ, - эндергонический:

АДФ + Н3РО4+7,3 ккал/моль (30,5 кДж/моль) = АТФ + Н2О. (2)

Синтез АТФ из АДФ и Н3РО4 за счёт энергии переноса электронов по ЦПЭ называют окислительным фосфорилированием.


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.