Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Художественная листовая штамповка металла в состоянии «сверхпластичности»

2017-06-29 559
Художественная листовая штамповка металла в состоянии «сверхпластичности» 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Сверхпластичность определяется как способность поликристаллических (ультрамелкозернистых) материалов равномерно пластически деформироваться на очень большие степени (до Ек > 200%) при относительно высоких температурах и малых напряжениях (2...8 МПа) и соответственно малых скоростях деформации, к которым напряжение течения крайне чувствительно.

 

Состояние сверхпластичности определяется совокупностью ряда признаков: повышенная чувствительность напряжения течения материала к изменению скорости деформации; крайне незначительное деформационное упрочнение; аномально высокий ресурс деформационной способности; напряжение течения металла в состоянии сверхпластичности в несколько раз меньше предела текучести, характеризующего пластическое состояние данного материала.

 

Наиболее существенный из этих признаков - первый, остальные в определенной мере можно рассматривать как его следствия.

 

Признаки сверхпластичности проявляются в определенных условиях, среди которых принципиальное значение имеют структурное состояние деформируемого материала, температура и скорость деформации.

 

По структурному признаку принято различать две разновидности сверхпластичности: сверхпластичность у металлов и сплавов с особо мелким (сверхмелким) зерном (d < 10 мкм) и сверхпластичность полиморфных металлов и сплавов, проявляющуюся при деформировании их в процессе фазовых превращений, при этом исходный размер зерен не имеет значения.

 

Первую разновидность сверхпластичности называют структурной. Ее отличительными особенностями являются зависимость эффекта от исходного размера зерен (чем меньше зерно, тем больше склонность материала к скоростному упрочнению, соответственно больше его деформационная способность и меньше напряжение течения) и почти неизменное структурное состояние материала в процессе деформации. При этом необходимо, чтобы зерна имели приблизительно равноосную форму, в процессе нагрева до температуры деформации обладали достаточной устойчивостью против роста. Наилучшие условия для предотвращения роста зерна - у двухфазных сплавов. В сверхмелкозернистое состояние сплавы приводят обычно предварительной термической или термомеханической обработкой.

 

Вторая структурная разновидность сверхпластичности, наблюдающаяся при деформации материала в процессе фазового превращения, характеризуется, в отличие от структурной свёрхпластичности, постоянным изменением фазового состава и структуры материалов в процессе деформации.

 

Температурный интервал существования структурной сверхпластичности довольно широк; различный для различных металлов и сплавов, он может находиться в пределах от температуры начала рекристаллизации (0,4 Tпл) до температур, близких к температуре плавления. Нижняя граница температурного интервала обусловлена важной ролью диффузионных процессов в механизме деформации сверхмелкозернистых материалов, верхняя граница соответствует температуре начала собирательной рекристаллизации. Однако какой бы ни была температура структурной сверхпластичности, она должна поддерживаться постоянной по объему деформационного объекта в течение всего периода деформации, чтобы обеспечить равномерное течение металла, поэтому структурную сверхпластичность иногда называют изотермической.

 

Сверхпластичность, связанная с превращениями, реализуется при различных температурных режимах (в процессе монотонно изменяющейся температуры, проходящей через интервал превращения; при термоциклировании в пределах температурной амплитуды, включающей интервал температур превращения).

 

Скорость деформации для обеспечения состояния структурной сверхпластичности должна быть, с одной стороны, достаточно малой, чтобы успевали в полном объеме протекать диффузионные процессы, участвующие в деформации, с другой стороны, достаточно высокой, чтобы в условиях повышенных температур не допускать роста зерен. Для подавляющего большинства металлов и сплавов оптимальный интервал скоростей деформации, соответствующий структурной сверхпластичности, составляет 10-2 - 10-5 с-1, т.е. находится в промежутке между скоростями высокотемпературной ползучести и скоростями деформации, используемыми в традиционных процессах обработки металлов давлением. Скорость деформации при сверхпластичности превращения должна быть пропорциональна скорости последнего.

 

Задача определения условий существования сверхпластичности сводится к экспериментальному определению температурно-скоростных режимов деформации и структурного состояния исследуемою материала, при которых последний проявляет максимальную чувствительность напряжения течения к скорости и деформации (способность к скоростному упрочнению).

 

Для описания структурной сверхпластичности чаще всего используют эмпирическое уравнение s = k × en × vm из которого следуют выражения, определяющие показатели деформационного (n) и скоростного (m) упрочнения. При n=0, что характерно для состояния, структурной сверхпластичности, s = k1 × vm

 

Таким образом, показатель m определяется как тангенс угла наклона кривой s (v) в двойных логарифмических координатах.

 

 

Рис.17. Схема условного разделения кривой сверхпластичности на три участка: I - m £ 0,3; II - 0,3 £ m £ mmax; III - m £ 0,3 (шкалы s и e - логарифмические; шкала m-линейная)

 

Для материалов в состоянии структурной сверхпластичности эта кривая, которую иногда называют кривой сверхпластичности, имеет характерную S - образную форму, а зависимость показателя т от скорости деформации описывается кривой с максимумом, координата которого по оси V соответствует координате точки перегиба S-образной кривой (рис.17). С увеличением температуры точка перегиба смещается в сторону больших скоростей деформации. Аналогично увеличению температуры действует уменьшение исходного размера зерна сверхпластичного материала.

 

Таким образом, показатель m не является реологической постоянной материала, т.е. существенно зависит от температурно-скоростных режимов деформаций.

 

Сверхпластичность фазового превращения характеризуется значительным изменением показателя m в процессе деформации от 0,2 до 1,0, причем в первом приближении он прямо пропорционален скорости фазового превращения. Эта зависимость наглядно иллюстрирует структурную природу нелинейности вязкого течения сверхпластичных материалов (рис.18).

 

 

Рис.18. Зависимость напряжения течения сплава MA-1 при растяжении и осадке и коэффициента m от температуры испытания (а) и скорости деформации (б)

 

Ряд особенностей, характеризующих металлы в состоянии сверхпластичности, - чрезвычайно большая деформационная способность, малое напряжение течения, слабое влияние сверхпластической деформации на микроструктуру, высокая релаксационная способность обеспечивают возможность значительного повышения эффективности процессов обработки металлов давлением и качества готовых изделий. С другой стороны, малые скорости деформации соответствующие состоянию сверхпластичности, необходимость подготовки структуры заготовок и регламентированного температурного режима деформации существенно усложняют и удорожают подготовку производства, снижают производительность технологических процессов и в результате ограничивают использование сверхпластичности в обработке металлов давлением. Сопоставление указанных преимуществ и ограничений, а также обобщение имеющегося опыта использования сверхпластичности, например в процессах штамповки, позволяет выделить ряд технологических задач, при решении которых наибольший эффект обеспечивает деформирование в состоянии сверхпластичности, К таким задачам прежде всего относятся следующие:

 

1. Штамповка малопластичных и трудно деформируемых металлов и сплавов на основе никеля, титана, магния, алюминия, железа, тугоплавких металлов, которые отличаются, как правило, высокой стоимостью, а их обработка - большой трудоемкостью и многооперационностью, поэтому увеличение деформационной способности материала в состоянии сверхпластичности позволяет существенно увеличить деформацию за один технологический переход и перейти, таким образом, к малооперационной технологии, что в значительной мере компенсирует уменьшение производительности за счет малых скоростей деформации.

 

Штамповка или другие способы формовки изделий, отличающихся особо сложной формой, получение которой часто недоступно для традиционных методов обработки металлов давлением (например, тонкостенные детали сложной формы с оребрением, замкнутые емкости сферической и более сложной формы и т.д.). Это дает возможность максимально приближать форму и размеры поковки к форме и размерам готовой детали, снижать до минимума или полностью исключить припуск на механическую обработку, добиваясь значительной экономии дорогостоящих металлов и сплавов, снижения трудоемкости механической обработки.

 

Снижение требуемых усилий штамповки и мощности применяемого оборудования. Прямым следствием этого является увеличение фондоотдачи деформирующего оборудования и уменьшение энергоемкости процессов штамповки: появляется возможность переводить производство ряда крупногабаритных штампованных поковок, получаемых на мощных прессах, на деформирование в состоянии сверхпластичности. Наряду с этим в состоянии сверхпластичности реализуются такие технологические процессы, как, например, бесфильерное волочение, газостатическая формовка, термоупругая штамповка, которые вообще не нуждаются в прессовом оборудовании. Малые удельные усилия при деформировании в состоянии сверхпластичности способствуют существенному увеличению стойкости штампованного инструмента и позволяют заметно уменьшить его стоимость.

 

Улучшение ряда показателей качества готовой продукции. Повышенная текучесть и малые удельные усилия при штамповке сверхпластичных материалов способствуют более качественному воспроизведению формы ручья штампа, повышению точности размеров и чистоты поверхности поковок, уменьшению разброса размеров в пределах партии поковок. Высокая способность к релаксации напряжений материалов в состоянии сверхпластичности практически исключает внутренние напряжения в изделиях, а это, в свою очередь, обеспечивает стабильность размеров и формы готовых деталей, повышенную стойкость металла детали против коррозии в химически активных средах, исключает коробления в процессе и после термообработки и т.д. И наконец, отсутствие существенных изменений структуры материала заготовки в процессе сверхпластической деформации обеспечивает получение высококачественных штампованных поковок, изотропных в отношении структуры и механических свойств.

 

6.2. Технологические процессы штамповки металлов в состоянии сверхпластичности

Наиболее часто сверхпластичность используется в технологии объемной штамповки. В этом случае состояние сверхпластичности позволяет осуществить штамповку точных поковок сложной формы и больших размеров из малопластичных материалов при весьма малых условиях деформации. В отличие от кованых поковок, а также от штампованных поковок обычной точности (рис. 19), требующих значительной обработки резанием по всей поверхности, точные штампованные поковки не надо обрабатывать, за исключением мест сопряжения и участков, в которых предусмотрено сверление или вырубка отверстий. При штамповке точечных поковок обеспечиваются жесткие допуски и минимальные радиусы закружений, штамповочные уклоны не превышают 1,75*10-2 рад. В результате при штамповке точечных поковок получают наибольший коэффициент использования металла (КИМ) 0,8 и более (у поковок обычной точности КИМ в среднем равен 0,2-0,5), что очень важно при изготовлении деталей из дорогостоящих металлов и сплавов.

 

Один из первых вариантов использования состояния сверхпластичности для получения объемных деталей сложной формы возник, как аналогия обработки материалов, относящихся к вязким жидкостям. Схема этого процесса (рис. 20) напоминает литье в металлическую форму под давлением. Процесс заключается в выдавливании цилиндрической заготовки 1 через соответствующие каналы 2 в полости ручьев штампа 3. Этот процесс, позволяющий получать детали неограниченно сложной формы, возможен исключительно для сверхпластичных материалов, таких, как сплавы Zn - 22% Al; Al - 33% Cu; Al - 13% Si. Однако классические сверхпластичные сплавы не нашли пока широкого промышленного применения, поэтому более перспективными выглядят процессы обработки давлением промышленных сплавов в температурно-скоростном режиме сверхпластичности. Наиболее значительные успехи в этой области достигнуты при штамповке поковок сложной формы в изотропных условиях из титановых сплавов.

 

Рис. 19. Контуры поковки, полученной различными способами: a - ковкой; б - черновой (предварительной) штамповкой; в - штамповкой обычной точности; г - точной штамповкой

 

 

Рис. 20. Комбинированный процесс выдавливание - штамповка: а - штампы; б - готовая деталь


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.