Строение клеток и функции флоэмы. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Строение клеток и функции флоэмы.

2017-06-25 1633
Строение клеток и функции флоэмы. 0.00 из 5.00 0 оценок
Заказать работу

Флоэма растений – это особый вид проводящей ткани, которая необходима для передачи питательных веществ, образованных в результате фотосинтеза, к органам растения, где они используются. По типу происхождения она подразделяется на следующие виды: первичная (дифференцированная из прокамбия); вторичная (образованная из камбия). Главное их отличие заключается в том, что в первичной флоэме отсутствуют сердцевидные трубки. Однако их клеточный состав идентичен. Флоэма состоит их следующих типов клеток: ситовидные (обеспечивают основной перенос веществ и не имеют клеточных ядер); склеренхимные (служат для опоры); паренхимные (выполняют функцию ближнего радиального транспорта). Главная особенность ситовидных клеток – наличие специальных пор в клеточных стенках. Их происхождение до сих пор неясно. Каналы ситовидных элементов выстланы каллозой (полисахарид), которая может в них накапливаться. Каллоза может закупоривать каналы этих клеток, к примеру, когда растение находится в фазе покоя в зимний период.

Флоэма: функции Фотосинтез осуществляется в хлоропластах листьев при участии солнечного света. Его продукты, вода и прочие растворы минеральных веществ, поглощенных корнями растений, необходимы для функционирования абсолютно всех клеток. Флоэма – это ткань, обеспечивающая их транслокацию. Растворы перетекают по ситовидным элементам от зон с высоким гидростатическим давлением к областям его низкого значения. Поэтому главная функция флоэмы – транспортная.

 

Строение клеток и функции ксилемы.

Ксилема и флоэма – это проводящие ткани, состоящие из нескольких типов клеток. Они имеются только у папоротникообразных и семенных растений. В проводящей ткани имеются как мёртвые, так и живые клетки.

Ксилема выполняет в растении как опорную, так и проводящую функцию – по ней движутся вверх по растению вода и минеральные соли. В состав ксилемы входят элементы четырех типов: трахеиды, сосуды, паренхимные клетки и волокна. Трахеиды – мёртвые одиночные клетки веретеновидной формы. Их концы перекрываются, придавая растению необходимую прочность. Вода движется по пустым просветам трахеид, не встречая на своём пути помех в виде клеточного содержимого; от одной трахеиды к другой она передается через поры. У покрытосеменных трахеиды развились в сосуды. Это очень длинные трубки, образовавшиеся в результате «состыковки» ряда клеток; остатки торцевых перегородок всё ещё сохраняются в сосудах в виде ободков. Размеры сосудов варьируют от нескольких сантиметров до нескольких метров. В первых по времени образования сосудах протоксилемы лигнин накапливается кольцами или по спирали. Это даёт возможность сосуду продолжать растягиваться во время роста. В сосудах метаксилемы лигнин сосредоточен более плотно – это идеальный «водопровод», действующий на большие расстояния.

Паренхимные клетки ксилемы образуют своеобразные лучи, соединяющие сердцевину с корой. Они проводят воду в радиальном направлении, запасают питательные вещества. Из других клеток паренхимы развиваются новые сосуды ксилемы. Наконец, древесинные волокна похожи на трахеиды. Они не проводят воду, но придают дополнительную прочность.

 

Типы проводящих пучков.

по взаимному расположению ксилемы и флоэмы, а также наличию и отсутствию камбия выделяют следующие типы проводящих пучков:

коллатеральные, или бокобочные проводящие пучки — пучки, в которых флоэма расположена снаружи от ксилемы. Могут быть открытыми (с камбием) и закрытыми (без камбия) Закрытые пучки характерны для однодольных растений, лишённых камбия.

биколлатеральные проводящие пучки — пучки, в котором флоэма прилегает к ксилеме снаружи и изнутри. Между наружной флоэмой и ксилемой находится камбий, то есть биколлатеральный пучок — открытый Свойственны некоторым двудольным, например, тыквенным радиальные проводящие пучки характерны для корней. В них экзархные первичные ксилема и флоэма располагаются чередующимися радиальными тяжами. Количество тяжей ксилемы всегда равно количеству тяжей флоэмы. По числу тяжей ксилемы (а значит, и флоэмы) выделяют:

монархные радиальные проводящие пучки с 1 тяжем ксилемы и 1 тяжем флоэмы Встречаются крайне редко, характерны для некоторых видов папоротника ужовника

диархные — 2 тяжа ксилемы и 2 тяжа флоэмы Наиболее распространённый тип радиальных проводящих пучков

три-, тетра-, пентархные — с 3, 4, 5 соответственно тяжами ксилемы ифлоэмы

полиархные — с большим числом чередующихся тяжей ксилемы и флоэмы; характерны для однодольных.

концентрические проводящие пучки — одна из тканей (ксилема или флоэма) окружает другую Различают:

амфивазальные концентрические проводящие пучки — ксилема окружает флоэму. Имеются у некоторых однодольных, например, драцены

амфикрибральные — ксилема окружена флоэмой. Характерны для папоротников

33. Строение и функции млечников, смоляных ходов, вместилищ. Млечники- живые клетки с цитоплазмой, множеством ядер и вакуолью, заполненной млечным соком (латексом). Стенка их состоит из целлюлозы. Различают два вида млечников: членистые и нечленистые. Членистые млечники образуются так же, как и сосуды, в результате разрушения поперечных стенок у вертикального ряда клеток. Они пронизывают все органы растения, образуя особую млечную систему, хотя ряд растений (бересклет, эвкоммия и др.) имеет отдельные, не соединённые в систему, длинные млечники. Нечленистые млечники возникают в результате разрастания инициальных клеток зародыша. Это гигантские цилиндрические или разветвленные клетки. Млечники располагаются только во флоэме, или пронизывают весь орган (стебель, корень, лист).Млечники присущи лишь некоторым группам растений, например части сложноцветных, маковым, молочайным. Млечники соединяют места синтеза органических веществ, например листья, с местами их потребления), кроме того участвуют в функции запаса питатеьных веществ (крахмал, сахара, белки, масло). К выделительным тканям относятся и группы клеток, формирующих лизигенные и схизогенные вместилища. Схизогенные вместилища служат для накопления и длительного хранения многих конечных продуктов жизнедеятельности, выключенных из обмена веществ. Они имеют округлую или каналовидную форму и различную величину.Схизогенные вместилища формируются из межклетников, возникающих в результате раздвигания клеток и увеличения межклетного пространства. Прилегающие к вместилищу живые клетки становятся экскреторными, выделяют в полость вместилища экскреторные вещества. Снаружи образуется слой клеток с утолщенными стенками, эти клетки выполняют механическую функцию. Схизогенные вместилища характерны для голосеменных, накапливают бальзам - раствор смол в эфирных маслах. Лизигенные вместилища - шаровидные полости, наполненные эфирными маслами, встречаются преимущественно в листьях, образуются в результате растворения группы клеток, заполненных экскреторными веществами. Вместилища находятся чаще всего под эпидермой. Лизигенные вместилища характерны для цитрусовых, встречаются в листьях зверобоя, лавра, эвкалипта, мирта, магнолии.

34. Понятие ценобия и бластемы. Талломная и кормусная организация растений. Ценобий колония одноклеточных организмов, соединенныхмежду собою определенным способом, причем, однако, каждая клетка колонии сохраняет все особенностинеделимого. Хорошим примером Ц. могут служить водоросли из семейства. Hydrodictyaceae (Hydrodictyon (водянаясетка), Pediastrum и др.). У всех названных водорослей колония слагается из клеток, соединенных междусобою характерным для каждого отдельного рода и даже вида способом, у Pediastrum наружные клетки, всвязи с общею формою колонии, имеют несколько отличающуюся от остальных клеток форму, но поотношению к размножению все клетки равнозначащи. Ср. Водоросли. 2) Название, данное Мирбелемплодам, распадающимся при созревании на несколько частей, как, напр., у губоцветных, бурачниковых, некоторых Simarubaceae и др.ТАЛЛОМ (слоевище) - вегетативное тело растения, не подразделенное на органы. Растению необходимо поддерживать при росте постоянное соотношение площади и объема (чтобы хватало ресурсов) это достигается за счет пластинчатой формы или цилиндрической. Уплощенные талломы - пластинчатые. Цилиндрические талломы водорослей называют нитчатыми. Таллом ветвится. И иногда теломами называют только свободные окончания веточек теломных растений, а соединяющие их участки тела назыают мезомами. Но это редко. У пластинчатых форм свободные окончания веточек никак не называются.Пластинчатые талломы имеют большую удельную пов-ть, благоприятную для поглощения растворенных в-в и света. Но парусность пластинчатого таллома не позволяет расти ортотропно в воздушной среде, тк на воздух в отличие от воды нельзя опереться - нужна жесткость, чтобы возвышаться над субстратом.Цилиндрические талломы, имея малую парусность могут расти ортотропно. Но они плохо улавливают свет.

35.Гомология и аналогия применительно к органам растений. Метаморфозы органов растений. Метаморфоз (от греч. metamórphosis — превращение) у растений, видоизменения основных органов растения, связанные обычно со сменой выполняемых ими функций или условий функционирования. М. происходит в онтогенезе растения и заключается в изменении хода индивидуального развития органа, которое выработалось и закрепилось в процессе эволюции. М. более всего подвержены побег в целом и лист как его боковой орган, что связано с разнообразием влияющих на них условий среды. Чаще М. типичного надземного побега с зелёными листьями вызван недостатком влаги и наблюдается у растений засушливых областей и местообитаний. Так, у стеблевых суккулентов (например, кактусов и африканских молочаев) мясистый стебель стал водозапасающим и фотосинтезирующим органом, в пазухах недоразвитых листьев на нём развиваются укороченные побеги с пучком колючек; благодаря безлистности у кактусов резко уменьшается общая испаряющая поверхность побега. Уменьшение испаряющей поверхности наблюдается и при таких М. надземных побегов, как кладодии (например, у спаржи) и филлокладии (например, у иглицы). Иногда происходит М. не всех, а только части побегов, например в деревянистые безлистные колючки (боярышник, гледичия.Нередко М. подвергаются только листья (например, колючки, сидящие на обычных стеблях барбариса, усики бобовых). В усик превращается или вся листовая пластинка (у некоторых видов чины), или только часть листочков сложного листа (у гороха и др).Для многолетних, главным образом травянистых, растений обычен М. подземных побегов, обеспечивающий переживание неблагоприятного периода, возобновление роста и вегетативное размножение. Это — запасающие органы, не имеющие зелёных листьев, но снабженные почками: корневища, клубни, луковицы или клубнелуковицы. М. корней обычно связан с гипертрофией запасающей функции (например, образование корнеплодов) или со специфической деятельностью корней в надземной среде (например, воздушные корни эпифитов, дыхательные корни мангровых)

М. может происходить на разных этапах развития органа. У многих травянистых растений побег сначала располагается на поверхности земли и несёт зелёные ассимилирующие листья, а затем теряет их, образует придаточные корни и постепенно погружается в почву, превращаясь в запасающий подземный орган — корневище. Так происходит истинный М. — превращение одного органа в другой со сменой формы и функции. В большинстве же случаев метаморфизируются не взрослые органы, а их зачатки. Детерминация зачатка органа, определяющая его окончательный облик и происходящая на разных этапах его развития, согласно представлениям сов. физиолога Д. А. Сабинина, связана с накоплением определённых физиологически активных веществ и зависит от ряда внешних и внутренних факторов.

36. Виды симметрии у растений. Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. Для растений характерна симметрия конуса, которая хорошо видна на примере любого дерева. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная – для двудольных.Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка – своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко.

37. Элементы и структура побега. Типы побегов. Типы ветвления побега. В ходе эволюции ветвление появилось у талломных (низших) растений; у этих растений точки роста просто раздваиваются. Такое ветвление называется дихотомическим, оно свойственно допобеговым формам – водорослям, лишайникам, печёночникам и антоцеротовым мхам, а также заросткам хвощей и папоротников. С появлением развитых побегов и почек возникает моноподиальное ветвление, при котором одна верхушечная почка сохраняет своё господствующее положение на протяжении всей жизни растения. Такие побеги упорядочены, а кроны стройны (кипарис, ель). Но при повреждении верхушечной почки этот тип ветвления не восстанавливается, и дерево теряет свой типичный внешний вид (габитус).Наиболее поздний по времени возникновения тип ветвления – симподиальный, при котором любая ближайшая почка может развиться в побег и заменить предыдущую. Деревья и кустарники с таким типом ветвления легко поддаются обрезке, формированию кроны и через несколько лет обрастают новыми побегами, не теряя своего габитуса (липа, яблоня, тополь).Разновидность симподиального ветвления ложнодихотомическое, которое свойственно побегам с супротивным расположением листьев и почек, поэтому взамен предыдущего побега вырастают сразу два (сирень, клён, чебушник).

 


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.