Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...
Топ:
Оценка эффективности инструментов коммуникационной политики: Внешние коммуникации - обмен информацией между организацией и её внешней средой...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Интересное:
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Дисциплины:
2017-06-13 | 1435 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Радиоактивные излучения невидимы, не имеют цвета, запаха или других признаков, на основании которых человек мог бы заподозрить их наличие, поэтому Обнаружение и измерение излучений производят косвенным путем на основании какого-либо их свойства.
Для регистрации ионизирующих излучений существует несколько методов, основанных на ионизационном, тепловом, фотохимическом и другом воздействии, которыми сопровождаются излучения при взаимодействии их с облучаемой средой. Наиболее широкое распространение получили радиографический ионизационный и сцинтилляционный методы регистрации излучений.
Прибор для регистрации ионизирующих излучений состоит из чувствительного элемента — детектора (датчика) и измерительной аппаратуры. В детектор входит вещество, с которым взаимодействуют частицы, и преобразователь эффектов взаимодействия в регистрируемые величины (импульсы, ток, химический осадок и т. д.), которые фиксируются измерительной аппаратурой. К основным и наиболее часто применяемым методам регистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические.
Ионизационный метод основан на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возникающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам. В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электродам подведено напряжение постоянного тока. Детектор включается в электрическую цепь. При прохождении ионизирующей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излучения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ действует излучение. В противном случае ток в цепи не протекает, так как газ является изолятором.
Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбужденные атомы и молекулы переходят в невозбужденное состояние с выделением энергии во внешнюю среду.
|
У некоторых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это проявляется в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих приборов. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излучениями, и основаны оптические методы.
Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя В настоящее время известно очень много различных сцинтилляторов – жидких, твердых, газообразных и в виде порошков различной плотности. Это позволяет подобрать необходимый детектор для наиболее эффективной регистрации любого ионизирующего излучения в широком диапазоне энергий.
|
Химические методы основаны на том, что часть поглощенной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излучения, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изменяется электрический потенциал и окраска раствора, что можно легко определить соответствующими способами. Отметим, что при использовании химических методов следует подбирать в качестве детекторов такие вещества, химические изменения в которых пропорциональны дозе или интенсивности ионизирующего излучения
Фотографические методы основаны на способности излучения разлагать галогениды серебра AgCl или AgBr, входящие в состав чувствительных фотоэмульсий, до металлического серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.
В заключение отметим, что большое разнообразие методов регистрации и детекторов связано с причинами различного характера взаимодействия излучения с веществом и различным пробегом. Поэтому невозможно сконструировать универсальный детектор, который одинаково хорошо регистрировал бы гамма-кванты, альфа- и бета-частицы. Легче всего зарегистрировать проникающее гамма-излучение. Для этого хороши счетчики Гейгера—Мюллера, но более эффектны сцинтилляционные детекторы с кристаллическими сцинтилляторами большой плотности.
Для регистрации бета-излучения применяют жидкие или пластмассовые сцинтилляторы, или ионизационные детекторы с очень тонкими стенками. Альфа-излучение из-за малого пробега в веществе регистрировать очень тяжело. В этом случае чаще используют ионизационные методы, но детекторы особых конструкций — открытые газовые или специальные полупроводниковые детекторы.
|
При регистрации ионизирующих излучений необходимо помнить о требованиях к измеряемым образцам. Особых требований не существует в случае гамма-излучающих образцов. В образцах, которые испускают бета-частицы, регистрация будет происходить только с верхнего тонкого слоя; все остальное бета-излучение поглощается в самом образце, не достигая детектора. Поэтому бета-излучающие образцы должны быть или очень тонкие, или бесконечно толстые. Радиометрия альфа-радионуклидов возможна только с очень тонкой пленки. В этом случае перед измерением необходимо провести радиохимическую* обработку образца; его предварительно сжигают, растворяют, выделяют альфа-излучающий радионуклид, который осаждают на подложку тонким слоем.Также отметим, что активность определяют, регистрируя радиоактивное излучение, которое сопровождает распад. Но так как для каждого вида излучения необходим отдельный детектор, активность можно определить только в том случае, когда известен состав радионуклидов в образце и число соответствующих частиц или квантов, которые излучаются при одном акте распада. Устройства, предназначенные для преобразования энергии ионизирующих излучений в другие виды энергии, удобные для индикации, последующей регистрации и измерения, называются детекторами ионизирующего излучения (от латинского слова "detector" – тот, кто раскрывает, обнаруживает), но детекторы, как правило, это лишь часть комплекса аппаратуры, предназначенной для регистрации излучений. Эффект, создаваемый излучением в детекторе, должен быть преобразован в электрический ток, который может привести в действие электрическое регистрирующее измерительное устройство. Устройства, предназначенные для регистрации действия ионизирующего излучения на детектор, называются регистраторами. Комплекты устройств – детектор и регистратор – называются радиометрами. Радиометры – приборы, предназначенные для получения информации об активности нуклидов, плотности потока и потоке ионизирующих частиц или фотонов. Разновидность радиометров представляют собой дозиметры, отградуированные в единицах дозы или мощности излучения. Дозиметры – приборы, предназначенные для получения информации об экспозиционной дозе и мощности экспозиционной дозы или (и) об энергии, переносимой ионизирующим излучением или переданной им объекту, находящемуся в поле его действия.
|
Существует электрофизическая аппаратура, которая позволяет расшифровать в деталях свойства излучения, проходящего через детектор. Приборы, предназначенные для анализа свойств ионизирующих излучений (радионуклидный состав, энергия, вид излучения, др.), называются анализаторами. В настоящее время различные типы анализаторов принято называть спектрометрами. Спектрометры – приборы, предназначенные для получения информации о спектре распределения ионизирующего излучения по одному или более параметрам, например, по энергии квантов или частиц в потоке излучения.
Иногда регистрация излучения сводится к регистрации следов прохождения отдельных ионизирующих частиц через вещество. По длине следа обычно определяют энергию зарегистрированных частиц, а по виду следа – вид частиц. Такие детекторы принято называть следовыми камерами, а также это могут быть толстослойные фотоэмульсии.
|
|
Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...
Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...
Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!