Биологическая продуктивность экосистем — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Биологическая продуктивность экосистем

2017-06-12 1095
Биологическая продуктивность экосистем 0.00 из 5.00 0 оценок
Заказать работу

Первичная и вторичная продукция. Одно из важнейших свойств экосистем – способность создавать органическое вещество, которое называют продукцией. Продуктивность экосистем – это скорость образования продукции в единицу времени (час, сутки, год) на единицу площади (метр квадратный, гектар) или объёма (в водных экосистемах). Органическую массу, создаваемую продуцентами за единицу времени, называют первичной продукцией сообщества. Она подразделяется на валовую и чистую продукцию. Валовая первичная продукция – это количество органического вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идёт на поддержание жизнедеятельности самих растений (траты на дыхание). В лесах умеренного пояса и тропических растения тратят на дыхание от 40 до 70 % валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений. Перерабатываясь в цепях питания, она идёт на пополнение массы гетеротрофных организмов.

Вторичная продукция – это прирост массы консументов за единицу времени. Её вычисляют отдельно для каждого трофического уровня. Консументы живут за счёт чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстаёт от темпов прироста растений, то это ведёт к постепенному увеличению биомассы продуцентов. Биомасса – это суммарная масса организмов данной группы или всего сообщества в целом. В стабильных сообществах с уравновешенным круговоротом веществ вся продукция тратится в цепях питания и биомасса остаётся постоянной.

Продукция и биомасса экосистем – это не только ресурс, используемый в пищу, от этих показателей в прямой зависимости находятся средообразующая и средостабилизирующая роль экосистем: интенсивность поглощения углекислоты и выделение кислорода растениями, регулирование водного баланса территорий, гашение шумов и т.д. Биомасса, в том числе и мёртвое органическое вещество, является основным резервуаром концентрации углерода на суше. Теоретически прогнозируемая скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Как известно, лишь 44% солнечного излучения относятся к фотосинтетически активной радиации (ФАР) – по длине волны, пригодной для фотосинтеза. Максимально достигаемый в природе КПД фотосинтеза – это 10–12% энергии ФАР, что составляет около половины от теоретически возможного. Он отмечается в наиболее благоприятных условиях. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как фотосинтетическая активность растений ограничивается множеством факторов: недостатком тепла и влаги, неблагоприятными почвенно-грунтовыми условиями и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны (табл. 2.) На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с ростом притока тепла и продолжительности вегетационного периода. Годовой прирост растительности изменяется от 20 ц/га на побережье Северного Ледовитого океана до 200 ц/га на Черноморском побережье Кавказа. Самый большой прирост растительной массы достигает в среднем 25 г/м2 в день при очень благоприятных условиях, при высокой обеспеченности растений водой, светом и минеральными веществами. На больших площадях продуктивность растений не превышает 0,1 г/м2: в жарких и полярных пустынях и обширных внутренних пространствах океанов с крайним дефицитом питательных веществ для водорослей.

 

Таблица 2

Биомасса и первичная продуктивность основных типов экосистем

(по Т.А. Акимовой, В.В. Хаскину, 1994)

Экосистемы Биомасса, т/га Продукция, т/га·год
Пустыни 0,1 – 0,5 0,1 – 0,5
Центральные зоны океана 0,2 – 1,5 0,5 – 2,5
Полярные моря 1 – 7 3 – 6
Тундра 1 – 8 1 – 4
Степи 5 – 12 3 – 8
Агроценозы 3 – 10
Саванна 8 – 20 4 – 15
Тайга 70 – 150 5 – 10
Лиственный лес 100 – 250 10 – 30
Влажный тропический лес 500 – 1500 25 – 60
Коралловый риф 15 – 50 50 – 120

 

Для пяти континентов мира средняя продуктивность экосистем различается сравнительно мало (82–103 ц/га в год). Исключением является Южная Америка (209 ц/га в год), на большей части которой условия для жизни растительности очень благоприятны.

Общая годовая продукция сухого органического вещества на Земле составляет 150–200 млрд тонн. Более трети его образуется в океанах, около двух третей – на суше.

Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими примерно 10% площади суши. Сельскохозяйственные площади при рациональном их использовании и распределении продукции могли бы обеспечить растительной пищей примерно вдвое большую численность населения планеты, чем существующую. Сложнее обеспечить население вторичной продукцией. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% от потребностей современного населения Земли. Следовательно, большая часть населения планеты находится в состоянии хронического белкового голодания. В связи с этим увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из важнейших задач человечества.

Экологические пирамиды. Каждая экосистема имеет определённую трофическую структуру, которую можно выразить либо числом особей на каждом трофическом уровне, либо их биомассой, либо количеством энергии, фиксируемой на единице площади за единицу времени на каждом последующем трофическом уровне. Графически это обычно представляют в виде пирамиды, основанием которой служит первый трофический уровень, а последующие образуют этажи и вершину пирамиды.

Рис. 17. Упрощённая схема пирамиды численности (по Г.А. Новикову, 1979)

 

Различают три основных типа экологических пирамид – чисел, биомассы и продукции (или энергии).

Пирамида чисел отражает распределение особей по трофическим уровням. Установлено, что в трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило: общее число особей в цепях питания на каждом последующем трофическом уровне уменьшается (рис. 17).

Это объясняется тем, что хищники, как правило, крупнее своих жертв и одному хищнику для поддержания его жизни требуется несколько жертв. Например, одному льву требуется 50 зебр в год. Однако из этого правила есть исключения. Волки, охотясь сообща, могут убивать жертву более крупную, чем они сами (например, оленей). Пауки и змеи, обладая ядом, убивают крупных животных.

В случае пастбищных пищевых цепей леса, когда продуцентами служат деревья, а консументами первого порядка – насекомые, численность последних больше, чем продуцентов. Подобная же картина наблюдается в цепях питания паразитов, размеры которых с каждым звеном уменьшаются, а число особей возрастает. Таким образом, пирамиды чисел могут быть перевёрнутыми.

Пирамида биомассы отражает суммарную массу организмов каждого трофического уровня. В большинстве наземных экосистем суммарная масса растений больше, чем биомасса всех растительноядных организмов, а масса последних, в свою очередь, превышает массу всех хищников (рис. 18)

               
   
 
     
  З   Ф
       
 

 

 


Коралловый риф Залежь Пелагиаль

Океана

 

Рис. 18. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976):

П – продуценты, РК – растительные консументы, ПК – плотоядные консументы, Ф – фитопланктон, З – зоопланктон

 

В океанах и морях, где основными продуцентами являются одноклеточные водоросли, пирамида биомассы имеет перевёрнутый вид. Здесь вся чистая первичная продукция быстро вовлекается в цепи питания, накопление биомассы водорослей очень мало, а их потребители гораздо крупнее, имеют большую продолжительность жизни, поэтому на высших трофических уровнях преобладает тенденция к накоплению биомассы.

Пирамида продукции (энергии) даёт наиболее полное представление о функциональной организации сообщества, так как отражает законы расходования энергии в пищевых цепях: количество энергии, содержащейся в организмах на каждом последующем трофическом уровне цепи питания меньше, чем на предыдущем уровне.


Рис. 19. Пирамида продукции

С2
для экосистем суши и океана

 

 
 

 

 


Количество продукции, образующейся в единицу времени на разных трофических уровнях, подчиняется тому же правилу, которое характерно для энергии: на каждом последующем уровне цепи питания количество продукции, создаваемой за единицу времени, меньше, чем на предыдущем. Это правило является универсальным, действует во всех типах экосистем (рис. 19). Пирамиды энергии никогда не бывают перевёрнутыми.

Изучение законов продуктивности экосистем, возможность количественного учёта потока энергии чрезвычайно важны в практическом отношении, так как первичная продукция агроценозов и эксплуатируемых человеком природных сообществ является основным источником запасов пищи для человечества. Не менее важна и вторичная продукция, которую получают за счёт сельскохозяйственных животных. Точные расчёты потока энергии в масштабах продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Наконец, очень важно хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность.

Динамика экосистем

Экосистемы непрерывно изменяются и развиваются под влиянием многих эндогенных и экзогенных факторов. Динамичность – одно из фундаментальных свойств экосистем, отражающее не только их зависимость от комплекса факторов, но и адаптивный ответ системы в целом на их воздействие. Все многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.

Циклические изменения отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов.

Суточная динамика экосистем связана главным образом с ритмикой природных явлений: изменениями температуры, влажности, условий освещённости и других факторов днём и ночью. Как известно, у растений в течение суток изменяются интенсивность и характер физиологических процессов – фотосинтеза, дыхания, транспирации. У животных изменяется характер активности тех видов, которые отличаются суточной ритмикой жизнедеятельности. Так, в лесах умеренной зоны днём в биоценозе господствуют насекомые, птицы и другие животные, отличающиеся дневной активностью, в ночное время на первое место выходит активность ночных видов животных (ночные бабочки, совы, козодои, многие млекопитающие и др.). В пустынях днём в полуденные часы наблюдается резкий спад активности большинства видов, даже тех из них, которые отличаются дневной активностью. Более того, в летний период, когда суточные изменения температуры наиболее экстремальны, ряд дневных видов меняет характер активности на сумеречную или даже ночную (некоторые насекомые, змеи и др.).

Разделение периодов активности во времени снижает уровень прямой конкуренции между видами сообщества и таким образом даёт возможность сосуществования видов со сходными экологическими требованиями и способствует более полному использованию ресурсов среды.

Сезонная изменчивость затрагивает более фундаментальные характеристики экосистем. Прежде всего это касается видового состава биоценозов. В неблагоприятные сезоны года одни виды мигрируют в районы с лучшими условиями существования, другие переносят неблагоприятные периоды в состоянии покоя, спячки, оцепенения или на стадии яиц и семян, т.е. практически полностью на определённое время года выключаются из жизни сообщества. Во всех случаях уменьшение числа активных видов влечёт за собой снижение общего уровня биологического круговорота веществ. Сезонная изменчивость биоценозов наиболее отчётливо выражена в климатических зонах, отличающихся резкими изменениями физических параметров среды летом и зимой. В тропиках она выражена не столь ритмично, так как длительность дня, температура и режим влажности очень мало изменяются в течение года.

Многолетняя изменчивость зависит от изменения по годам количества осадков, температуры или других внешних факторов, воздействующих на сообщество. Кроме того, она может быть связана с особенностями жизненного цикла растений-эдификаторов, с массовым размножением животных или патогенных для растений микроорганизмов. Например, в засушливое лето на нормальных суходольных лугах в лесной зоне нередко преимущественное развитие получают виды растений, имеющие признаки ксероморфной организации и повышенную устойчивость к засухе (клевер горный, подорожник средний, полынь равнинная, лапчатка серебристая и др.), тогда как во влажные годы их обилие заметно уменьшается. Многолетние изменения в составе биоценозов повторяются вслед за периодическими изменениями климата.

В процессе циклических изменений целостность сообществ обычно сохраняется. Биоценоз испытывает лишь периодические колебания количественных и качественных характеристик.

Поступательные изменения в экосистеме приводят в результате к смене одного сообщества другим. Причинами подобных смен могут быть внешние по отношению к биоценозу факторы, длительное время действующие в одном направлении, например заболачивание почв, усиленный выпас скота и т.д. Данные смены одного сообщества другим называют экзогенетическими. Смены, приводящие к упрощению структуры сообщества, обеднению его видового состава и снижению продуктивности, называют дигрессиями.

Эндогенетические смены возникают в результате процессов, происходящих внутри самого сообщества. Закономерный направленный процесс изменения сообщества в результате взаимодействия живых организмов между собой и окружающей их абиотической средой называют сукцессией. В основе сукцессии лежит неполнота биологического круговорота в данном биоценозе. Популяции при длительном существовании в сообществе изменяют условия среды обитания в неблагоприятную для себя сторону и оказываются вытесненными популяциями других видов, для которых вызванные изменения среды оказываются благоприятными. Таким образом, в сообществе происходит смена господствующих видов.

Длительное существование биоценоза возможно лишь в том случае, если изменения среды, вызванные деятельностью одних видов организмов, благоприятны для других с противоположными требованиями. Последовательный ряд закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией.

Сукцессии в природе можно наблюдать повсеместно: в лужах и прудах, в листовом опаде, на заброшенных пашнях, лугах, вырубках и т.д. Даже в стабильных экосистемах постепенно происходит множество локальных сукцессионных смен, поддерживающих сложную внутреннюю структуру сообществ.

Выделяют два основных типа сукцессионных смен: 1) с участием как автотрофных, так и гетеротрофных организмов; 2) с участием только гетеротрофов. Сукцессии второго типа происходят только в условиях, где имеется запас или постоянное поступление органических соединений, за счёт которых существует сообщество, например, в кучах навоза или компоста, скоплениях разлагающихся растительных остатков, в пещерах и т.п. Сукцессии со сменой растительности могут быть первичными и вторичными.

Первичные сукцессии начинаются на местах, лишённых жизни, – на скалах, сыпучих песках, отвалах горнодобывающей промышленности. Процесс сукцессии включает несколько этапов: 1) возникновение незанятого участка; 2) миграция на него организмов или их зачатков; 3) приживание их на данном участке; 4) конкуренция их между собой и вытеснение некоторых видов; 5) преобразование живыми организмами местообитания, постепенная стабилизация условий и отношений. Занос спор, семян, проникновение животных на освободившийся участок происходят случайно и зависят от того, какие виды есть в окружающих биотопах. Из попавших на новое место видов закрепляются лишь те, чьи экологические потребности соответствуют абиотическим условиям данного местообитания. Новые виды постепенно осваивают биотоп, конкурируют друг с другом и вытесняют наименее приспособленные к этим условиям виды. Со временем происходят и перестройка сообщества и преобразование среды обитания. Основная роль принадлежит накоплению отмерших растительных остатков или продуктов разложения. Постепенно формируется почва, изменяются гидрологический режим участка, его микроклимат.

Примером первичной сукцессии может служить зарастание скал. Сообщество первых поселенцев на скалах слагается из хемотрофных и азотфиксирующих бактерий и некоторых водорослей (преимущественно синезелёных и диатомовых). Отмирание этих организмов кладёт начало накоплению на камне мёртвого органического вещества, которое даёт пищу грибам. Грибы в симбиозе с водорослями образуют лишайники. Сообщества накипных лишайников разрушают своими выделениями минеральную породу, что приводит к накоплению на поверхности камня мелкозёма, удерживающего мёртвые органические вещества и растворы минеральных солей. Так возникает почва, которая уже пригодна для более крупных и требовательных к субстрату растений. На ней формируются сообщества листовых и кустистых лишайников и мхов, которые вытесняют накипные лишайники. С утолщением слоя мелкозёма появляется возможность укоренения в нём травянистых растений с поверхностной корневой системой, а затем кустарников и деревьев.

Вторичные сукцессии представляют собой восстановительные смены. Они начинаются там, где уже сложившиеся сообщества частично нарушены, например в результате вырубки, пожара, выпаса и т.д. Смены, ведущие к восстановлению прежнего состава биоценоза, называют демутационными. Примером может служить восстановление елового леса после вырубки. В первые два года на вырубках обычно разрастаются светолюбивые травянистые растения – иван-чай, вейник, крапива двудомная и др. Всходы ели на открытых местах повреждаются заморозками, страдают от перегрева и не могут конкурировать со светолюбивыми растениями. Вскоре на вырубке появляются многочисленные всходы берёзы, осины, сосны, семена которых легко разносятся ветром. Деревья вытесняют светолюбивые травянистые растения, и постепенно развивается мелколиственный или сосновый лес, в котором возникают условия, благоприятные для возобновления ели. Когда ель достигает верхнего яруса, она полностью вытесняет мелколиственные деревья.

Восстановительные смены совершаются быстрее и легче, чем первичные сукцессии, так как в нарушенном сообществе сохраняются почвенный профиль, семена, зачатки и часть прежнего населения. Темпы происходящих изменений в процессе сукцессии постепенно замедляются. Каждый последующий этап длится дольше предыдущего. Итогом сукцессии является формирование климаксового сообщества. Начальные группировки видов отличаются наибольшей динамичностью и неустойчивостью. Климаксовые сообщества способны к длительному самоподдержанию, так как круговорот веществ в них сбалансированный. В ходе сукцессии постепенно нарастает видовое многообразие, вследствие чего усложняются связи внутри биоценоза и усиливаются регуляторные возможности внутри системы. В незрелых сообществах преобладают мелкоразмерные виды с короткими жизненными циклами и высоким потенциалом размножения. Постепенно в развивающихся сообществах появляются более крупные формы с длительными циклами развития. Нарастание биологического разнообразия ведёт к более чёткому распределению организмов по экологическим нишам. В результате сообщества приобретают определённую степень независимости от окружающих условий, не подчиняя свою жизнь изменениям внешней среды, а вырабатывая собственные эндогенные ритмы.

В ходе сукцессии общая биомасса системы стабилизируется. Это происходит потому, что на первых этапах сукцессии, когда видовой состав сообществ ещё беден и пищевые цепи коротки, не вся чистая продукция потребляется гетеротрофами. Поэтому накапливаются как общая масса живых организмов, так и запасы мёртвого неразложившегося вещества. В зрелых, устойчивых экосистемах весь годовой прирост растительности расходуется в цепях питания гетеротрофами, поэтому чистая продукция биоценоза приближается к нулю.

Знание этих закономерностей имеет большое значение в практической деятельности человека. Изымая избыток чистой продукции из биоценозов, находящихся на начальных стадиях сукцессии, мы задерживаем её, но не подрываем основу существования сообщества. Вмешательство же в климаксовые экосистемы неминуемо вызывает нарушение сложившегося равновесия. Пока нарушения не превышают самовосстановительной способности биоценоза, демутационные смены могут вернуть его к исходному состоянию. Но если сила воздействия выходит за рамки этих возможностей, то сообщество постепенно деградирует, сменяясь производными с малой способностью к самовозобновлению.

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.03 с.