Водородная деполяризация. Процессы окисления и восстановления на поверхности металла — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Водородная деполяризация. Процессы окисления и восстановления на поверхности металла

2017-06-04 184
Водородная деполяризация. Процессы окисления и восстановления на поверхности металла 0.00 из 5.00 0 оценок
Заказать работу

Коррозию металлов, при которой катодная реакция осуществляется с выделением водорода, называют коррозией металлов с водородной деполяризацией.

Коррозия металлов с водородной деполяризацией имеет место:

, т.е. в растворах кислот, например, кислотное растворение железа, цинка и других металлов;

при достаточно отрицательных значениях потенциала ионизации металла, например, коррозия магния в воде или растворах солей.

На практике с такими явлениями сталкиваются при хранении и перевозке кислот, при кислотном травлении металлов, при получении кислот на стадии абсорбции.

(последнее отвечает парциальному давлению

в атмосфере)

 

Катодный процесс выделения водорода состоит из стадий:

массопереноса гидратированных ионов водорода к поверхности металла;

от поверхности металла.

крайне мала и выделение водорода происходит за счет восстановления молекул воды:

не наблюдается.

Главными причинами катодной поляризации является замедленная стадия электрохимического разряда или концентрационная поляризация по молекулярному водороду, связанная с отводом газообразного продукта.

являются большим и самостоятельным вопросом, в изучение и развитие которого значительный вклад внесли работы ученых научной школы академика А.Н. Фрумкина. Эти работы широко освещаются в учебниках по электрохимии. Мы приведем только краткие, основные сведения.

зависимость изменения потенциала от плотности тока является линейной.

равен

118 мВ, что отвечает механизму замедленной стадии разряда с переносом одного электрона, хотя не исключены и другие механизмы.

Константа а в уравнении Тафеля (4.22) зависит от материала катода или материала инородных катодных включений в составе сплавов и численно определяется как величина перенапряжения при плотности тока, равной 1 А/см2. Наиболее высокое перенапряжение наблюдается на свинце, ртути, кадмии, цинке.

Поляризация вследствие замедленной диффузии молекулярного водорода носит название газовой концентрационной поляризации. Она сопровождает процесс водородной деполяризации, начиная с самых низких плотностей катодного тока.

имеет вид, изображенный на рис. 4.6 (участки АВ и ВС).

. Давление внутри металла увеличивается и происходит разрыв сплошности металла.

Таким образом, коррозия металлов с водородной деполяризацией характеризуется:

большой зависимостью скорости коррозии металла от рН раствора;

большой зависимостью коррозионной стойкости сплавов от их природы и содержания в них катодных примесей;

увеличением скорости коррозии во времени, что связано с ростом посторонних примесей на поверхности металла в результате его расторения;

возможностью появления водородной хрупкости металлов.

Окисли́тельно-восстанови́тельные реа́кции, также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления и не более 2-х атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).

процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого

Окисление — процесс отдачи электронов с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):

восстановитель - e− ↔ сопряжённый окислитель.

Несвязанный, свободный электрон является сильнейшим восстановителем.

Восстановление

Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):

окислитель + e− ↔ сопряжённый восстановитель.

 

5. Плакирование и наплавка металла и сплавов

Плакирова́ние (фр. plaquer — накладывать, покрывать), те́рмомехани́ческое покры́тие — нанесение на поверхность металлических листов, плит, проволоки, труб тонкого слоя другого металла или сплава термомеханическим спос Осуществляется в процессе горячей прокатки (например, плакирование листов и плит), прессования (плакирование труб), а также методом сварки взрывом[1]. Заключается в совместной горячей прокатке или волочении основного и защитного металлов. Сцепление между металлами осуществляется в результате диффузии под влиянием совместной деформации горячей заготовки. Защищаемый металл (сталь, сплавы титана) покрывают с одной или с обеих сторон медью, томпаком, коррозионно-стойкой сталью, алюминием.

Плакиро́ванную проволоку изготавливают волочением трубы, внутрь которой вставлен сердечник из другого металла.

Цель плакирования состоит в том, чтобы создать на поверхности детали слоя материала с особыми свойствами — высокой твёрдостью, коррозионной и/или износостойкостью и т. д., он применяется при изготовлении деталей/оборудования или при восстановлении их формы после изнашивания. При этом толщина плакирующего слоя может составлять от десятых долей миллиметра до нескольких миллиметров.

Недостатками плакирования являются дороговизна метода и ускоренная коррозия в зоне сварных швов.

Плакирование может быть одно- и двусторонним

Плакирование используется при изготовлении и ремонте элементов деталей, подверженных воздействию агрессивных сред (грязи, шлаков, пара) в целях экономии дорогостоящих материалов. Применяется для получения биметалла и триметалла, для создания антикоррозийного слоя алюминия на листах, плитах, трубах из алюминиевых сплавов, нанесения латунного покрытия на листы стали (вместо электролитического покрытия) и т. д. Также используется в ювелирном деле, например, накладка в виде золота накладывается на серебро (серебро с золотом). Плакирование широко применяется при изготовлении монет — например, монеты 1 и 5 копеек (сталь, плакированная мельхиором), 10 и 50 копеек (сталь, плакированная томпаком — с 2006 года), 1 и 2 рубля (сталь, плакированная никелем — с 2009 года), 5 рублей (медь, плакированная мельхиором — до 2009 года; сталь, плакированная никелем — с 2009 года) и 10 рублей (сталь, плакированная латунью — с 2009 года).[2] В корпусах ядерных реакторов используют плакирование нержавеющей аустенитной сталью внутренней поверхности корпуса, так как основной материал корпуса (перлитная высокотемпературная сталь) подвержен коррозии при высоких температурах.

 

Наплавка — это нанесение слоя металла или сплава на поверхность изделия посредством сварки плавлением.

Восстановительная наплавка применяется для получения первоначальных размеров изношенных или поврежденных деталей. В этом случае наплавленный металл близок по составу и механическим свойствам основному металлу.

Наплавка функциональных покрытий служит для получения на поверхности изделий слоя с необходимыми свойствами. Основной металл обеспечивает необходимую конструкционную прочность. Слой наплавленного металла придаёт особые заданные свойства: износостойкость, жаростойкость, жаропрочность, коррозионную стойкость и т. д.

Важнейшие требования, предъявляемые к наплавке, заключаются в следующем:

минимальное проплавление основного металла;

минимальное перемешивание наплавленного слоя с основным металлом;

минимальное значение остаточных напряжений и деформаций металла в зоне наплавки;

занижение до приемлемых значений припусков на последующую обработку деталей.

Способы наплавки

Ручная дуговая наплавка покрытыми электродами

Дуговая наплавка под флюсом проволоками и лентами

Дуговая наплавка в защитных газах вольфрамовыми (неплавящимися) и проволочными металлическими (плавящимися) электродами

Дуговая наплавка самозащитными порошковыми проволоками

Электрошлаковая наплавка

Плазменная наплавка

Лазерная наплавка

Электронно-лучевая наплавка

Индукционная наплавка

Газопламенная наплавка

Наплавку производят при восстановлении изношенных и при изготовлении новых деталей машин и механизмов. Наиболее широко наплавка применяется при ремонтных работах. Восстановлению подлежат корпусные детали различных двигателей внутреннего сгорания, распределительные и коленчатые валы, клапаны, шкивы, маховики, ступицы колес и т. д.

 

6. Неорганические и органические кремнесодержащие (стеклоэмалевые и органические) покрытия

Кремнийорганические покрытия — уникальное сочетание антикоррозионных свойств и термостойкости.

При высоких рабочих температурах у металлов и неметаллов, как правило, снижается прочность, а у металлов — еще и коррозионная стойкость. В связи с этим встает вопрос о защитных покрытиях, которые должны сочетать в себе антикоррозионные свойства и термостойкость.

Как известно, наиболее распространенным способом защиты конструкционных материалов от разрушающего воздействия коррозионной среды является нанесение лакокрасочных покрытий.

Лакокрасочная продукция на основе полиорганосилоксанов на протяжении нескольких десятилетий входит в ряд важнейших термостойких защитных покрытий, способных противостоять действию температур 200–600 °С.

Эмали на основе чистых полиорганосилоксановых смол используют для окраски и защиты дымовых труб, котлов, электрических печей и нагревателей, электродвигателей, трансформаторов, печей обжига и крекинга на химических заводах, насосов для перекачивания нагретых до высокой температуры жидкостей, выхлопных труб и глушителей двигателей внутреннего сгорания, теплообменников и выпарных аппаратов, внутренних стенок сушильных шкафов, паропроводов высокого давления, а также хозяйственных нагревательных приборов.

Эмалевые краски на основе модифицированных полиорганосилоксановых смол, например, специально разработанные композиции для защиты металлических поверхностей от одновременного воздействия влаги и высокой температуры, используют для окраски мостов, питательных резервуаров, водонапорных башен, различного медицинского и сигнализационного оборудования и т. д. Кроме того, оказалось, что полиорганосилоксановые полимеры можно использовать для получения терморегулирующих покрытий (в основном с высокой степенью черноты). По этому показателю они превосходят другие полимеры, а их высокая термо- и атмосферостойкость обеспечивают высокое качество покрытий.

Стеклоэмалевые покрытия обладают большой прочностью к абразивному воздействию и выдерживают действие различных агрессивных сред в диапазоне температур до 300 °С. Эти покрытия применяют для защиты от коррозии внутренней и внешней поверхностей газонефтепроводов и теплопроводов. Стеклоэмалевые покрытия особенно успешно используют для защиты внутренней поверхности сборной сети трубопроводов на нефтяных промыслах, водопроводов, сети законтурного заводнения и поддержания пластового давления.

 Стеклоэмалевые покрытия отличаются высокой химической стойкостью почти ко всем органическим и минеральным кислотам и прочим продуктам в широком интервале температур. Однако эмалевое покрытие невозможно обрабатывать, притирать, поэтому в качестве запорного элемента в эмалированных вентилях и клапанах с проходными каналами небольшого диаметра применяют фторопластовые диафрагмы, по химической стойкости к агрессивным средам и диапазону рабочих параметров не уступающие эмалевому покрытию. В арматуре с проходным каналом большого диаметра вследствие необходимости слишком большие усилия для герметизации затвора диафрагмой из сравнительно жесткого фторопласта уплотнение осуществляется резиной. Химическая стойкость и температурный диапазон резины значительно меньше, что ограничивает область применения такой арматуры.

 

Технологические покрытия

Изобретение относится к защитным покрытиям от окисления. Техническим результатом изобретения является повышение жаростойкости, вязкости, понижение значений удельного давления и коэффициента трения покрытия при температурах нагрева штамповок до 1400°C. Защитное технологическое покрытие содержит, мас.%: SiO2 15-21; MgO 5-10; Na2O 7-8,5; 3CaO·Al2O3 1-9; Al2O3·MgO 2-5; B2O3 8-12,5; Bаморфный 2,5-3,5; NiAl2O4 3-5; NiSiO4 3,5-10; Al2O3 - остальное. 2 табл., 12 пр.

Изобретение относится к области производства силикатных материалов, которые могут быть использованы как защитные покрытия от окисления и в качестве высокотемпературной смазки при технологических нагревах в процессе изготовления деталей и полуфабрикатов в машиностроении и в других отраслях народного хозяйства.

Известно защитное технологическое покрытие следующего химического состава, мас.%:

Al2O3 19-33
CaO 1-8
MgO 1-7,5
3CaO·Al2O3 0,8-1,2
CaO·6Al2O3 3-11
ВаО·6Al2O3 3-5
MgO·Al2O3 0,3-1
SiO2 остальное

(RU 2404933 C1, 27.11.2010).

Известно также защитное технологическое покрытие следующего химического состава, мас.%:

SiO2 40-75
Al2O3 6-18
CaO 4-11
MgO 1-4
B2O3 5-15
Na2O 0,5-1
K2O 0,3-3
ВаО 5-10
Al2O3·3SiO2 2-7

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.038 с.