Глава 1. Физические основы и классификация сварочных процессов — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Глава 1. Физические основы и классификация сварочных процессов

2022-12-30 22
Глава 1. Физические основы и классификация сварочных процессов 0.00 из 5.00 0 оценок
Заказать работу

Глава 1. ФИЗИЧЕСКИЕ ОСНОВЫ И КЛАССИФИКАЦИЯ СВАРОЧНЫХ ПРОЦЕССОВ

Пайка и склеивание

Пайкой называется образование соединения с межатомными связями в результате нагрева соединяемых металлов (ниже темпе­ратуры их плавления), смачивания их расплавленным припоем, затекания припоя в зазор и последующей его кристаллизации. Сварку и пайку часто бывает трудно разграничить. Например, на пайку похожа сварка разнородных металлов в сочетаниях сталь и медь, вольфрам и молибден и др., когда расплавляется только один, более легкоплавкий металл. Поэтому в дальнейшем при ана­лизе источников энергии целесообразно объединить сварку и пай­ку и называть рассматриваемые процессы одним термином - свар­ка. Пайку можно выполнить с использованием тех же источников энергии, что и сварку.

Образование непрерывной межатомной связи при пайке про­исходит в процессе смачивания припоем поверхности соединяе­мых деталей. Смачивание и связь твердого тела с жидкостью обу­словлены электростатическими силами Ван-дер-Ваальса и силами химического взаимодействия.

Адгезию и когезию между твердым и жидким веществами обычно принято называть смачиванием. Различают три типа смачи­вания: 1) физическое (или обратимое); 2) хемоадсорбционное; 3) химическое смачивание, при котором имеет место растворение одного вещества в другом, взаимное растворение или химическая реакция. Для осуществления химического смачивания при пайке не­обходим нагрев деталей и припоя, а также активация в специальных средах при обработке поверхности флюсом.

Склеивание может происходить практически без введения энергии в месте соединения благодаря силам адгезии (прилипания) между жидким клеем и молекулами поверхностных слоев твердого тела, а также в результате химических реакций. Способность клея соединять изделия объясняется силами остаточного химического сродства между находящимися на поверхности молекулами клея и склеиваемого материала. Эти силы примерно в 10-100 раз меньше основных сил химической связи в простых молекулах. Они, на­пример, обусловливают у жидкостей явление поверхностного на­тяжения, способность смачивать или не смачивать поверхности различных материалов.

В случае высокомолекулярных соединений, когда мономерная молекула, повторяясь в полимере тысячи раз, образует макро­молекулу, силы адгезии возрастают прямо пропорционально росту молекулярной массы. Эти силы, имея электрическую природу, в значительной степени зависят от химической структуры клея и склеиваемого материала.

Полярные группы - карбоксильные, спиртовые, эпоксидные, аминогруппы и другие - значительно увеличивают адгезию клея к полярным материалам. Для увеличения адгезионных сил при склеи­вании некоторые неполярные материалы подвергают термической или химической обработке с целью получения на их поверхности полярных групп. Наличие или отсутствие адгезии клея к склеивае­мому материалу легко определить по смачиваемости клеем этого материала. Для улучшения адгезии во всех случаях склеиваемую поверхность подвергают тщательной очистке и обезжириванию (иногда искусственно повышают степень ее шероховатости).

Однако прочность клеевого соединения определяется не толь­ко адгезией, но и когезией, т. е. силами взаимодействия между мо­лекулами самого клея. Силы когезии термопластических клеев имеют ту же природу, что и силы адгезии. У клеев на основе тер­мореактивных связующих когезионные силы внутри клеевого шва после его отвердевания будут усиливаться также благодаря обра­зованию обычных химических связей.

Таким образом, прочность клеевых соединений определяется химическими и межмолекулярными силами притяжения частиц клея и склеиваемого материала. В начальной стадии процесса, ког­да силы взаимодействия, обусловленные смачиванием и межмоле­кулярным взаимодействием частиц, в основном слабы, прочность клеевого соединения мала. Далее при возникновении химических связей прочность увеличивается.

Существенное отличие склеивания от большинства сварочных процессов и пайки заключается в том, что при затвердевании клея вследствие охлаждения, полимеризации и других физико-химичес­ких явлений взаимное растворение и диффузия соединяемых мате­риалов, как правило, полностью отсутствуют.

 

КПД сварочных процессов

 

Каждая ступень передачи энергии от источника к изделию мо­жет иметь свой коэффициент полезного действия (КПД). Из тео­рии распространения теплоты при сварке известны эффективный (ηи) и термический (ηt) КПД сварочного процесса, которые приня­то выражать так:

Кроме того, по мере накопления данных по анализу энергети­ческого баланса для всех сварочных процессов в дальнейшем це­лесообразно ввести термодинамический КПД сварочного процесса ηтд = εст / εсв = ηи ηt, который по форме аналогичен КПД процесса проплавления (например, при дуговой сварке листов), однако име­ет более общий характер. Термодинамический КПД сварочного процесса показывает отношение минимальной удельной энергии εст, необходимой в зоне сварки для выполнения данного соеди­нения, к требуемой энергии сварочного источника, передаваемой инструменту. Удельная энергия εст соответствует в данном случае изменению энергосодержания зоны стыка, отнесенному к площади получаемого сварного соединения.

Представляет интерес сравнение введенной в изделие удельной энергии εи и удельной энергии εр, необходимой для разрушения полученного сварного соединения. Их отношение будет прибли­женно характеризовать некоторый физический КПД процесса со­единения материалов: ηф = εри.

В связи с изложенным целесообразно сравнивать по вводимой энергии все существующие сварочные процессы. Этот критерий поможет выявить общие физические закономерности, связываю­щие их между собой.

 

Термические процессы

 

Для всех термических сварочных процессов, независимо от ви­да носителя энергии (инструмента), она вводится в стык в конеч­ном итоге всегда через расплавленный материал. Энергия хаотиче­ски движущихся частиц расплавленного материала носит в термо­динамике название термической, чем и обосновано наименование этих процессов.

Теория термических процессов и их применение описаны в гл. 2 и 3 достаточно подробно. Из рассмотрения исключены хими­ческие процессы газовой и термитной сварки, индукционная и электрошлаковая сварка, которые изучаются в соответствующих технологических курсах.

 

Термомеханические процессы

 

К термомеханическим сварочным процессам относятся про­цессы, идущие с введением теплоты и механической энергии сил давления при осадке. Теплота может выделяться при протекании электрического тока, газопламенном или индукционном нагреве, при введении в зону сварки горячего инструмента и т. п. Сварка может вестись как с плавлением металла (частичным или по всему соединению), так и без плавления. Эти процессы подробно описа­ны в технологических курсах.

Сокращение затрат энергии (благодаря рациональному выбору источника энергии для сварки) даже на несколько процентов мо­жет дать в масштабах страны существенную экономию энергии, что в свете постоянно растущего дефицита энергии на Земле при­обретает с каждым годом все большее значение.

Эффективность использования способов сварки плавлением достигается при минимальной ширине шва, что, в свою очередь, определяется степенью концентрации источника теплоты (диамет­ром пятна нагрева) и теплофизическими особенностями проплавления. Эти особенности учитываются при определении энерго­затрат на сварку через термический КПД процесса, а полученные выше минимальные оценки полезной удельной энергии составля­ют лишь часть общей энергии сварки, т. е. εст = ηиηtεсв. Учитывая эффективный и термический КПД сварочных процессов, можно изменить представление о целесообразности применения того или иного способа сварки при прочих равных условиях. Например, ду­говая сварка с высокими значениями эффективного КПД (ηи = 0,6...0,8) характеризуется низкими значениями термического КПД (ηt = 0,15...0,25). Электронно-лучевая сварка, характеризует­ся более высокими значениями ηи (0,8...0,9) и ηt(0,3...0,5). В тер­модинамическом аспекте она более предпочтительна.

Сопоставим удельные энергозатраты на сварку листов низко­углеродистой стали толщиной 10 мм различными способами (табл. 1.5). Минимальное энергосодержание расплавленной стали составляет около 9000 Дж/см3. Приведенные в табл. 1.5 оценки являются приближенными, так как даже для одного и того же про­цесса на разных режимах сварки энергозатраты могут различаться в 1,5-2 раза, что определяется параметрами режима и свариваемо­го сплава. Кроме того, КПД источника теплоты не является посто­янным, ввиду его зависимости от скорости сварки, состояния по­верхности и др.

Для одного и того же источника энергии, например при кон­тактной сварке, внутреннее сопротивление машины может разли­чаться в 10 раз и соответственно этому изменяется КПД источника.

 

Требования к источникам энергии для сварки и оценка их эффективности

Виды разряда

В обычном (нормальном) состоянии газы являются хорошими электрическими изоляторами - диэлектриками. Однако, приложив достаточно сильное электрическое поле, можно вызвать наруше­ние изолирующих свойств газа (пробой) и его ионизацию: в газе возникают заряженные частицы, и он становится проводником, благодаря чему появляется возможность пропускать через провод­ник электрический ток и воздействовать на него электромагнит­ными полями. Протекание тока через газ получило название элек­трического разряда в газах (или газового разряда). Различают самостоятельный и несамостоятельный газовые разряды, послед­ний прекращается при устранении внешнего источника ионизации. Явления, возникающие при протекании электрического тока через газ, зависят от рода и давления газа, от материала, из которого из­готовлены электроды, от геометрии электродов и соединяющего их канала, а также от величины протекающего тока.

Газовый разряд может быть неустойчивым (например, искро­вым) и устойчивым (стационарным). В дальнейшем будем рас­сматривать только самостоятельные и стационарные газовые раз­ряды. Их можно классифицировать по внешнему виду: темновой (таунсендовский), тлеющий, в том числе коронный, и дуговой раз­ряды. Например, если в длинной цилиндрической стеклянной трубке, заполненной газом при давлении около 100 Па, медленно повышать разность потенциалов между катодом и анодом, то приборы фиксируют наличие тока начиная с 10-12А. Он появляется вследствие вызываемой космическими лучами ионизации в объеме газа на стенках трубки и на электродах. С помощью ограничи­вающего сопротивления можно получить все три формы разряда (рис. 2.1). Темновой разряд переходит в тлеющий, который от­личается уже заметным свечением, используемым в газосветных трубках. При этом катодное падение потенциала U к ≥ 100 В; плотность тока j ≈ 10-2... 10-1 А/см2.

Практически повсюду, за исключением приэлектродных облас­тей, ионизованный газ электронейтрален, т. е. представляет собой слабоионизованную неравновесную плазму. Это так называемый положительный столб тлеющего разряда. Температура атомов или молекул газа в тлеющем разряде практически не повышается и равна 300...350 К.

 

 

 

 

Затем через аномальный тлеющий разряд происходит переход к дуговому разряду (существующему, как правило, на токах более 1 А, низком общем   напряжении - менее 100 В) с катодным паде­нием потенциала   U к ≤ 20 В и большой плотностью тока на катоде: jк ≈ 102...105 А/см2. Дуговой разряд, или дуга, характеризуется высокой температурой газа в проводящем плазменном канале (при атмосферном давлении Т = 5000...50000 К) и высокими концен­трациями частиц в катодной области.

 

Возбуждение дуги и ее зоны

 

Возбуждение дуги возможно в следующих случаях:

1) при переходе из устойчивого маломощного газового разряда в дуговой (см. рис. 2.1);

2) в процессе создания высокоионизованного потока пара, пе­рекрывающего межэлектродное пространство (в большинстве слу­чаев с помощью третьего электрода);     

3)при электрическом пробое газового или вакуумного проме­жутка между электродами, обеспечивающем переход из неустойчивого искрового разряда в устойчивый разряд (осуществляется подачей импульса высокой частоты и высокого напряжения);

4) при размыкании контактов или разрыве перемычки между электродами в цепи с током.

При сварке плавящимся электродом обычно используют дугу размыкания, а при сварке неплавящимся вольфрамовым электро­дом - высокочастотный вспомогательный разряд от осциллятора. Импульс высокого напряжения получают обычно с помощью кон­денсатора. При сварке угольным (графитовым) электродом дугу возбуждают, используя чаще всего третий электрод.

В газовых промежутках (при атмосферном давлении) с резко неоднородным электрическим полем напряжение возбуждения са­мостоятельного дугового разряда не совпадает с напряжением про­боя, которому соответствует перекрытие газового промежутка плазменным каналом с падающей вольт-амперной характеристикой. В этих условиях сопротивление плазменного канала, перекрываю­щего межэлектродный промежуток разряда, становится меньше, чем сопротивление внешней цепи, включая внутреннее сопротивле­ние источника напряжения. Поэтому правильно считать, что при достаточной мощности источника напряжения искровой пробой завершается образованием плазменного канала дуги.

В самостоятельном дуговом разряде начиная с токов выше нескольких ампер наблюдается неравномерное распределение потенциала и температуры между электродами (рис. 2.2, 2.3).

 

 

 

 

Скачки потенциала в катодной и анодной областях обусловле­ны скоплениями пространственного заряда и повышенным сопро­тивлением этих областей по сравнению со столбом дуги.

Неравномерным оказывается и распределение температуры по длине столба дуги. Высокие значения температуры в столбе дуги (плазменном канале) снижаются до существенно меньших значе­ний на поверхности электродов. Все это приводит к тому, что условия в приэлектродных областях заметно отличаются от условий в плаз­менном канале (шнуре), и, следова­тельно, при изучении процессов в дуге следует выделить три зоны: катодную 1, анодную 2 и столб дуги 3 (рис. 2.4).

В газовом промежутке между двумя электродами заряженные частицы мо­гут возникнуть во всех трех зонах, но главным образом они появляются в ре­зультате процессов эмиссии на катоде и объемной ионизации в столбе дуги. В связи с ограниченностью эмиссии элек­тронов столб дуги (как и любой про­водник) вдали от катода сохраняет по отношению к нему положительный потенциал, поэтому часто его называют положительным столбом. В то же время не следует за­бывать, что плазма столба обычно квазинейтральна.

 

Основные параметры плазмы

 

Как известно, плазма состоит из заряженных и нейтральных частиц. Положительно заряженными частицами плазмы являются положительные ионы (газовая плазма) и дырки (плазма твердого тела), а отрицательно заряженными частицами - электроны и от­рицательные ионы.

Состав нейтрального компонента плазмы может быть доста­точно сложным: помимо атомов и молекул, находящихся в нор­мальном состоянии, в плазме в гораздо большем количестве могут присутствовать атомы и молекулы в различных возбужденных со­стояниях. Но поскольку плазма - это ионизованный газ, для ее описания используются те же понятия, что и для обычного газа.

Введем основные параметры плазмы, исходя из простых молекулярно-кинетических представлений. Прежде всего необходимо знать концентрацию (плотность) частиц разного сорта n α м-3 (ин­декс α означает сорт частиц). Далее все величины, относящиеся к электронам плазмы, будем обозначать с индексом е, к ионам - с ин­дексом i, а к нейтральным частицам - с индексом α. Если в плазме присутствуют ионы нескольких сортов, следует задавать отдельно концентрацию ионов каждого сорта. Состав плазмы удобно также характеризовать безразмерным параметром - отношением концен­трации электронов к сумме концентраций нейтральных частиц и

электронов, или степенью ионизации По степени ионизации плазму обычно подразделяют на слабо ионизованную (χ << 10-3) и полностью ионизованную (χ → 1), т. е. плазму, состоящую только из заряженных частиц.

Частицы, образующие плаз­му, находятся в состоянии хао­тического теплового движения. Для характеристики этого дви­жения вводят понятие темпера­туры плазмы в целом Т или от­дельных ее компонентов - час­тиц сорта α -   Т α. Температура плазмы вводится в предположе­нии, что плазма в целом нахо­дится в состоянии термодинами­ческого равновесия, а функции распределения частиц всех сор­тов по скоростям v являются максвелловскими с одной и той же температурой T; в этом случае плазма называется изотермической. Гораздо чаще в плазме имеет­ся частичное термодинамическое равновесие, когда отдельные ее компоненты имеют максвелловские распределения по ско­ростям с различными температурами. Такая плазма является не­изотермической.

В частности, распределение электронов по модулям скоростей описывается выражением:

 (2.1)

 

где k = 1,38 • 10-23 Дж/К - постоянная Больцмана; Т е - температура электронов, К; v - скорость хаотического теплового движения электронов, м/с.

График функции f e(v) приведен на рис. 2.6. Аналогичный вид имеют функции распределения по скоростям и для других час­тиц. Максимум функции f e(v) определяет наиболее вероятную скорость

 

 

Средняя тепловая скорость электронов

 (2.3)

Для средней квадратичной скорости получаем

 (2.4)

В случае максвелловской функции распределения (2.1) темпе­ратура Т е характеризует среднюю кинетическую энергию теплово­го движения электрона ε ־:

 (2.5)

Поскольку температура и средняя кинетическая энергия тепло­вого движения частиц столь тесно взаимосвязаны, в физике плаз­мы принято выражать температуру в единицах энергии, например в электронвольтах. Температура Т эВ, выраженная в электронвольтах, связана с соответствующей температурой Т, выраженной в кельвинах, соотношением

Рассчитаем, какая температура Т (в кельвинах) соответствует температуре Т эВ = 1 эВ:

Отметим, что средняя кинетическая энергия частицы ε ־ равна

3/2 ТэВ, а не Т эВ.

Часто пользуются понятием температуры плазмы и в тех слу­чаях, когда функция распределения частиц (сорта α) отличается от максвелловской, понимая под температурой Т α величину, опреде­ляемую соотношением (2.5).

Плазму газового разряда часто называют низкотемпературной. Ее температура обычно не превышает 104...105 К, а концентрация заряженных частиц n еn i ≈ 108... 1015 см-3, причем такая плазма практически всегда слабоионизована, так как концентрация нейтральных частиц n α ≈ 1012...1017 см -3. В плазме сильноточного дугового разряда Т ≈ 104...105 К, а концентрация заряженных частиц n еn i ≈ 1018... 1020 см-3 при практически полной ионизации.

 

Эффект Рамзауэра

 

Обращает на себя внимание резкое уменьшение эффективного сечения Qea при малых энергиях электронов (ε ≤ 1 эВ) для ряда тяжелых атомов, в том числе для атомов тяжелых инертных газов. Это явление называется эффектом Рамзауэра (рис. 2.9).

При малых энергиях электронов в тяжелых инертных газах взаимодействие электронов с атомами сильно ослабляется в связи с эффектом Рамзауэра. Это объясняется волновым характером по­ведения электрона в процессе его упругого взаимодействия. При определенном соотношении между длиной волны де Бройля

 

                                                               (2.21)

 

соответствующей медленно движущемуся электрону, и размерами атома создаются условия для почти беспрепятственного прохождения волны через атом, что дает малое сечение Qea. (Здесь h = 6,626 • 10-34   Дж • с - постоянная Планка).

В условиях обычных сварочных дуг при температуре в столбе дуги T ст = 5000... 12 000 К значения полных сечений Рамзауэра Qe = Qea + Qei , вычисленные Меккером, составляют от (2...5)• 10-16 см2 для инертных газов и до 5 • 10-14 см2 для щелочных металлов (рис. 2.10), т. е. отличаются почти в 200 раз.

Возникает вопрос: когда и какие именно значения длины свободного пробега или эффективного сечения следует применять в расчетах?

Из рис. 2.9 следует, что эффект Рамзауэра и минимум сечения Se = nQe соответствуют энергиям электрона ≈ 1 эВ.

В плазме столба сварочной дуги при Т CT = 5000... 10 000 К, как будет показано ниже, средняя энергия электронов в соответствии с масвелловским распределением по скорос­тям равна ≈ 1 эВ. Поэтому для плаз­мы в инертных газах следует принять длину свободного пробега электронов равной

 (2.22)

что отвечает минимуму соответствующей данному газу кривой Рамзауэра.

В приэлектродных областях дуги температуры электронов Те и газа Та не равны, термическое равновесие не соблюдается (Те ≠ Та) и электроны могут набирать энергию до 8...20 эВ. На рис. 2.9 это примерно соответствует газокинетическим сечениям молекул.

Средний газокинетический пробег иона Λ־ i в слабых полях ма­ло отличается от пробега молекул, т. е. для ионов (если диаметры иона и молекулы считать равными) имеет место соотношение

 (2.23)

Скорость электронов намного больше скорости молекул ve» v м. Кроме того, согласно кинетической теории газов элек­трон можно считать точкой (de «du). Это значит, что электрон может подойти к центру молекулы на расстояние d м /2, поэтому площадь круга эффективного соударения Qea будет вчетверо меньше. Учитывая это, получим газокинетический пробег элек­трона

 (2.24)

Например, в воздухе при Т = 300 К и атмосферном давлении для газов Λ־м = 1 • 10 -7 м. В плазме при Т = 6000 К значение Λ־м будет в 20 раз больше (см. формулу (2.9)), а Λ־е ≈ 20 • 5,6 • 10-7 ≈ 1,1 • 10-5 м. Такое значение (Λ־ е ≈ 10-5 м) часто принимают при расчете в приэлектродных областях дуги наряду с Λ־ i ≈ 10-7 м. Вы­численный по Рамзауэру пробег электрона в плазме Λе может от­личаться от газокинетического Λ־е в десятки раз.

 

Потенциал ионизации

 

Ионизацию можно рассматривать как крайний случай воз­буждения, когда электрону сообщается энергия большая, чем энергия самого высокого возбужденного уровня атома.

Чтобы вырвать электрон из атома (молекулы), нужно затратить энергию, равную энергии его связи в атоме. Эту энергию называ­ют потенциалом ионизации Ui,- и часто выражают в вольтах (точ­нее, в электронвольтах). Первый потенциал ионизации - потенци­ал ионизации, соответствующий удалению наиболее слабо связан­ного электрона из нейтрального невозбужденного атома; удале­нию из ионизованного атома следующих электронов соответству­ют второй, третий и т. д. потенциалы ионизации.

Значения первого потенциала ионизации Ui атомов некоторых элементов приведены ниже:

Атом    Cs К Na Ca Fe Н   О  N Аг F Ne Не

Ui, эВ    3,9 4,3 5,11 6,08 7,83 13,53 13,56 14,5 15,6 18,6 21,5 24,6

 

Термическая ионизация

 

Неупругие соударения частиц между собой при высоких тем­пературе и плотности газа приводят к так называемой термической ионизации, которая возникает за счет кинетической энергии час­тиц. Наиболее вероятна следующая схема неупругого соударения быстрого электрона и атома:

 

 

Результатом неупругого соударения будет образование иона и двух электронов, обладающих малыми скоростями. Затем элек­троны снова начнут ускоряться электрическим полем.

Ионизация холодной плазмы осуществляется весьма неболь­шим числом высокоскоростных электронов, соответствующих «хвосту» максвелловского распределения. Поэтому неупругих столкновений в сварочном столбе дуги обычно значительно мень­ше, чем упругих.

Энергия ионизации, численно равная Ui зависит от строения атома, т. е. от его места в периодической системе элементов Мен­делеева (рис. 2.11). Потенциал ионизации Ui представляет собой периодическую функцию атомного номера элемента Z, и значения Ui снижаются с уменьшением номера группы и увеличением но­мера периода таблицы Менделеева. Наименьший потенциал иони­зации (Ui = 3,9 эВ) имеют пары цезия Cs. Единственный валент­ный электрон у щелочных металлов первой группы слабо связан с ядром, поэтому и энергия ионизации щелочных металлов невели­ка. Наивысший потенциал Ui =24,6 эВ наблюдается у самого лег­кого из инертных газов - гелия Не. Оболочка инертных газов за­полнена и поэтому наиболее прочна.

 

 

 

Фотоионизация

 

Атомы и молекулы могут возбуждаться не только при соуда­рениях между собой или с ионами и электронами, но и путем по­глощения квантов излучения, которые появляются в столбе дуги при рекомбинации других сильно возбужденных атомов. Условие фотоионизации выражается формулой

 (2.27)

где h = 4,13∙10-15 эВ∙с - постоянная Планка; v = c /λi – частота колебаний; с - скорость света; λ i - длина волны электромагнитного излучения, способного вызвать ионизацию атомов, м. Из условия (2.27) получаем выражение для λ i

 (2.28)

Чем больше потенциал ионизации элемента Ui, тем меньше требуемая длина волны λ i. Для сварочной дуги значения e Ui со­ставляют 4...25 эВ и соответствующие длины волн находятся в ультрафиолетовой части спектра. Например, для аргона e Ui = 15,7 эВ, λ i = 1,24-10-6 /15,7 = 7,85∙10-2 мкм, а для щелочных металлов e Ui = 4...6 эВ; λ i = 0,2...0,3 мкм.

Фотоионизация в плотной плазме, видимо, незначительна по сравнению с термической ионизацией, причем выделить их доли расчетным и опытным путем пока не удается.

 

Деионизация

 

В любой точке стационарного разряда концентрация заряжен­ных частиц любого типа определяется равенством скоростей обра­зования и потерь частиц в этой точке. Ионизация в плазме приводит к разделению зарядов, но электрическое притяжение ограничивает степень возможного разделения и плазма остается квазинейтральной. Наряду с ионизацией непрерывно происходят уравновеши­вающие ее процессы деионизации. К ним относятся рекомбинация заряженных частиц в нейтральные, захват электронов (прилипание), дрейф проводимости и диффузионные процессы, выравнивающие концентрацию (амбиполярная диффузия).

Скорость рекомбинации ионов и электронов в нейтральные частицы при их концентрациях ni, n е, па определяется коэффици­ентом рекомбинации R по уравнению

 (2.29)

Коэффициент рекомбинации R тем больше, чем больше плот­ность частиц. Он зависит также от сорта частиц, времени их жиз­ни, от размеров ионов, от наличия близко расположенных тел (нейтральных атомов воздуха или охлаждающих стенок).

Проводимость газового разрядного промежутка определяют прежде всего электроны как высокоскоростные частицы. Захват электронов атомами (прилипание) и ионами в процессе рекомби­нации можно в некоторых случаях рассматривать как обратимый процесс, а в других - как практически необратимый процесс. На­пример, процесс Na+ + e ↔ Na0 можно считать обратимым. Если же при сварке в состав покрытия электрода или флюса вводят пла­виковый шпат CaF2, то в этом случае может происходить необра­тимый захват электрона фтором.

Захват электронов с образованием тяжелых отрицательных ио­нов может осуществляться и другими атомами металлоидов, кото­рые обладают довольно большим сродством к электрону (3...4 эВ). В дуговом разряде под флюсом из галогенов могут происходить, например, такие процессы:

F + е → F-1 + 3,94 эВ; О + е → О-1 + 3,8 эВ;

С1 + е → Сl-1 + 3,7 эВ; Н + е → Н-1 + 0,76 эВ.

Порядок значения сродства к электрону таков, что указанные процессы могут считаться обратимыми. Но быстрая рекомбинация образовавшихся отрицательных ионов и положительных ионов металлов в молекулы (R велико) приводит к более интенсивной деионизации разрядного промежутка.

 

Излучение плазмы

 

Явление рекомбинации электрона и иона заключается в том, что свободный электрон, пролетая в поле иона, захватывается им и переходит в связанное состояние. При этом освобождается энергия, равная сумме кинетической энергии свободного электрона и его энергии связи. Например, если электрон с энергией ее захватывается протоном и в результате образуется нормальный атом водорода, то полный выигрыш энергии составит εе + 13,6 эВ (рис. 2.12).

Заштрихованная область на диаграм­ме энергий соответствует свободным электронам. Их кинетическая энергия отсчитывается от линии нулевого уровня вверх. Нормальное состояние электрона, связанного в атоме водорода, соответству­ет отрицательной энергии 13,6 эВ. Напом­ним, что за нулевой уровень энергии условно принимается состояние, при ко­тором связь между ядром и электроном разорвана и эти частицы разведены на очень большое расстояние с нулевой ки­нетической энергией.

Освобождающаяся энергия может излучаться в виде фотона с энергией εе + 13,6 эВ. Возможен также ступенчатый переход, при котором атом сначала оказывается в одном из доступных возбужденных состояний, а затем перескакивает на нормальный уровень. Это изображено на правой стороне диаграммы. Тормозному излуче­нию соответствует изменение энергетического состояния электро­на в заштрихованной области (переход между точками А и В). Так как свободные электроны обладают непрерывным набором энер­гий, то фотоны, излучаемые в процессе рекомбинации, образуют сплошной спектр, на который накладывается линейчатый спектр возбужденных атомов, образующихся при ступенчатых переходах.

Для сварочных дуг, имеющих ТеТ i ≤104 К, излучение ре­комбинации преобладает над тормозным излучением электронов и имеется преимущественно сплошной спектр с максимумом длин волн излучения в видимой и ультрафиолетовой областях оптиче­ского диапазона 0,3... 1,0 мкм. Спектр сварочной дуги в парах ме­таллов приближается к спектру солнечного излучения с неболь­шим сдвигом в сторону длинных волн (рис. 2.13).

Сплошной спектр интегрально дает наибольшую часть излу­чения дуги. Однако интенсивность отдельных линий линейчатого спектра на фоне сплошного спектра значительно выше. По часто­те (длине волны) и интенсивности определенных спектральных линий, излучаемых в разных зонах дугового разряда, можно су­дить о концентрации возбужденных атомов и, следовательно, о температуре зоны. Сравнивая интенсивности спектральных линий, делают заключение об электронной температуре плазмы и степени приближения ее к термодинамическому равновесию. Важные све­дения о плотности электронов в плазме получают, измеряя уширение спектральных линий.

 

 

Явления переноса в плазме

 

Направленное движение ионов и электронов в плазме может быть вызвано двумя причинами: электрическим полем, создаю­щим ток, или же разницей в концентрации частиц между раз­личными участками плазмы. Кроме того, в неравномерно нагретой плазме обмен частицами между областями с различной тем­пературой создает механизм плазменной теплопроводности, бла­годаря которому через плазму идет поток тепловой энергии. Пе­речисленные процессы объединяются общим названием - явление переноса. Они обеспечивают переход от неравновесного к равно­весному состоянию.

 

Электропроводность

 

Важнейшим свойством плазмы является способность перено­сить заряженные частицы под действием электрического поля. При наложении электрического поля возникают силы, заставляю­щие электроны дрейфовать - двигаться вдоль силовых линий поля; на хаотическое тепловое движение электронов накладывается их упорядоченное движение со скоростью дрейфа. Пользуясь закона­ми классической физики, можно оценить ее порядок по сравнению со скоростью теплового движения.

Электрический ток создается направленным потоком электро­нов. В простейшем случае при неизменной силе тока имеет место равновесие между силой, с которой действует на электроны элек­трическое поле, и силой торможения, обусловленной столкнове­ниями между электронами и ионами. Сила торможения равна среднему значению импульса, теряемого электроном при столкно­вении с ионами.

Полагаем, что движение электрона как частицы с массой m е и зарядом е под действием поля напряженностью ¯ Е и ускоряющей силы е ¯ Е происходит в течение времени τе = Λ / ve, где ve - сред­няя квадратичная скорость электрона (скорость теплового движе­ния, так как скоростью дрейфа пренебрегаем вследствие ее срав­нительной малости), а Λ - средняя длина свободного пробега элек­трона. При движении с ускорением е¯ Е/ me за время τе электрон разгоняется до скорости дрейфа

 (2.30)

Плотность тока у в плазме равна сумме электрических зарядов, пересекающих единичную площадку за 1 с:

 (2.31)

Подставляя в (2.31) значение ve из (2.30), получаем выражение закона Ома для плазмы

 (2.32)

Здесь σ - удельная электропроводность плазмы (См/м, Ом-1 • м-1):

 (2.33)

Величину

 (2.34)

называют подвижностью носителя тока (электрона), а уравнение (2.34) известно как уравнение Ланжевена. Входящая в уравнение (2.34) величина τе ха


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.118 с.