Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Дипольный момент системы зарядов. Диэлектрическая восприимчивость для полярных и неполярных диэлектриков — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Дипольный момент системы зарядов. Диэлектрическая восприимчивость для полярных и неполярных диэлектриков

2022-11-14 57
Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Дипольный момент системы зарядов. Диэлектрическая восприимчивость для полярных и неполярных диэлектриков 0.00 из 5.00 0 оценок
Заказать работу

В отсутствии внешнего электрического поля дипольные моменты мо­лекул диэлектрика с неполярными молекулами равны нулю. В диэлектрике с полярными молекулами дипольные моменты распределены по направлениям в пространстве хаотически, и суммарный электрический момент диэлектрика равен нулю.

Под действием внешнего поля диэлектрик поляризуется и его результирующий момент становится отличным от нуля. Степень поляризации оценивают электрическим моментом единицы объема:

Величина называется вектором поляризации диэлектрика. У всех диэлектриков, кроме сегнетоэлектриков, вектор поляризации пропорционален напряженности:

, (1.2.4)

где - независящая от безразмерная величина, называемая диэлектрической восприимчивостью. Для диэлектриков, построенных из неполярных молекул, имеет место деформационный механизм поляризации (под действием поля положительные заряды в молекуле смещаются в направлении поля, отрицательные – против поля, молекула деформируется и приобретает форму диполя) формула (2.4) вытекает из следующих соображений. В пределы объема попадает количество молекул, равное , где - число молекул в единице объема. Каждый из моментов молекул определяется как . Тогда . Разделив это выражение на , получим для вектора поляризации . Обозначив , приходим к формуле (1.2.4).

Если диэлектрик построен из полярных молекул, ориентирующему действию внешнего поля препятствует тепловое движение молекул. Оно стремится разбросать дипольные моменты молекул по всем направлениям. В результате устанавливается некоторая преимущественная ориентация дипольных моментов молекул в направлении поля (ориентационный механизм поляризации), и поляризация пропорциональна напряженности поля, т.е. выполняется соотношение (1.2.4). Диэлектрическая восприимчивость таких диэлектриков обратно пропорциональна абсолютной температуре.

Из сказанного выше ясно, что диэлектрическая восприимчивость характеризует способность вещества поляризоваться, т.е. изменять свою поляризацию под действием электрического поля : .

Диэлектрическая восприимчивость является одним из основных параметров диэлектрика. Если диэлектрик анизотропный, то направления векторов и не совпадают, и представляет собой тензор. В этом случае связь векторов и имеет вид:

 

59

 

Силовые линии и эквипотенциальные поверхности

 

 

Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии. Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определить между двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:
  . (3.6.1)  

Теперь дадим определение эквипотенциальной поверхности. Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Уравнение этой поверхности

  (3.6.2)  

Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

Рис. 3.4

При перемещении по этой поверхности на d l потенциал не изменится:

Отсюда следует, что проекция вектора на d l равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине.

Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Можно решить и обратную задачу, т.е. по известным значениям в каждой точке поля найти разность потенциаловмежду двумя произвольными точками поля. Для этого воспользуемся тем, что работа, совершаемая силами поля над зарядом q при перемещении его из точки 1 в точку 2, может быть, вычислена как:

 

 

    Электростатическая защита – явление, согласно которому, можно экранировать электрическое поле «спрятавшись» от него внутри замкнутой оболочки из проводящего электричество материала (например, металла). Явление было открыто Майклом Фарадеем в 1836 году. Он обратил внимание, что внешнее электрическое поле не может попасть внутрь заземлённой металлической клетки. Принцип работы клетки Фарадея заключается в том, что под действием внешнего электрического поля, свободные электроны, находящиеся в металле, начинают движение и создают на поверхности клетки заряд, который полностью компенсирует это внешнее поле.     Электростатическая защита нужна там, где необходимо экранировать электроприборы от внешних электрических полей (например, в автомобильных магнитолах, блоках питания, лабораторном оборудовании). Эти приборы помещаются в металлический корпус, который защищает их от внешних электрических помех. В отличие от электрического, постоянное магнитное поле свободно проникает внутрь клетки Фарадея.

 

 

58

 

 

Циркуляция и ротор векторного поля

Линейным интегралом вектора называют

(1)

В силовом поле он выражает работу сил поля при перемещении точки вдоль линии . В случае замкнутой кривой формула (1) называется циркуляцией поля вектора по контуру . Циркуляция характеризует вращательную способность поля по контуру .

Ротором называется

(2)

характеризует вращательную способность этого поля в точке . Она зависит как от координат точки , так и от направления плоскости , и достигает наибольшей величины, когда перпендикулярно вектору .

Векторное поле, во всех точках которой вихревой вектор равен нулю называют потенциальным. В потенциальном поле линейный интеграл (работа) не зависит от формы линии соединяющей какие-либо две точки, а циркуляция всегда равна нулю.

Векторное поле, одновременно являющееся потенциальным и соленоидальным, называется гармоническим.

(3)

Смысл которого заключается в следующем. Циркуляция вектора по замкнутому контуру равна потоку вихря вектора через поверхность , ограниченную этим контуром.

Пример.

Вычислить циркуляцию поля вектора вдоль окружности ,


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.