Элементарные частицы и фундаментальные взаимодействия — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Элементарные частицы и фундаментальные взаимодействия

2022-11-14 25
Элементарные частицы и фундаментальные взаимодействия 0.00 из 5.00 0 оценок
Заказать работу

Элементарные частицы в точном значении этого термина – первичные, неделимые частицы, из которых состоит вся материя. Понятие “элементарная частица” трансформировалась по мере развития знаний о строении материи. На рубежеXIX-XXвеков мельчайшей частицей вещества (т.е. элементарной частицей) считался атом (по-гречески  - ”неделимый”). В дальнейшем выявилась сложная структура атома, состоящего из ядра и электронов. В свою очередь ядра, как оказалось, также являются сложными структурами и состоят из протонов и нейтронов. В настоящее время считается, что протоны и нейтроны также состоят из более элементарных частиц – кварков. В строгом смысле именно кварки в настоящее время должны считаться элементарными частицами. Однако в современной физике термин “элементарные частицы” употребляется не в своем точном значении, а менее строго – для наименования большой группы мельчайших частиц материи, которые не являются атомами или атомными ядрами, т.е. объектами заведомо составной природы. В эту группу входят протон(p), нейтрон (n), фотон (),  - мезоны и другие частицы – всего более 350 частиц, в основном нестабильных.

Различные процессы с элементарными частицами заметно различаются по интенсивности их протекания. В соответствии с этим взаимодействия элементарных частиц можно разделить на четыре класса: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие вызывает процессы, протекающие с наибольшей интенсивностью, оно приводит к самой сильной связи элементарных частиц. Именно это взаимодействие обуславливает связь протонов и нейтронов в ядрах атомов и обеспечивает устойчивость ядер. Потому сильное взаимодействие называют также ядерным.

Электромагнитное взаимодействие осуществляется через электрическое поле. Это взаимодействие возможно только между электрически заряженными телами. Электромагнитное взаимодействие заметно слабее сильного. Именно это взаимодействие обуславливает связь электронов с ядром в атоме и атомов в молекуле.

Слабое взаимодействие вызывает очень медленно протекающие процессы с элементарными частицами. Примером процесса, обусловленного слабым взаимодействием, является-распад и-распад, а примером элементарной частицы, способной только к слабому взаимодействию, может служить нейтрино.

Гравитационное взаимодействие является универсальным, оно наблюдается между любыми материальными телами, но в микромире оно не играет существенной роли. По сравнению с остальными тремя взаимодействиями оно пренебрежимо мало.

 

После того как предсказанное теоретически существование позитрона было подтверждено экспериментально, возник вопрос о существовании антипротона и антинейтрона. Расчеты показывают, что для создания пары частица — античастица надо затратить энергию, превышающую удвоенную энергию покоя пары, поскольку частицам необходимо сообщить весьма значительную

кинетическую энергию. Для создания pp -парынеобходима энергия примерно 4,4 ГэВ.
  ~  

Антипротон был действительно обнаружен экспериментально (1955) при рассеянии протонов (ускоренных на крупнейшем в то время синхрофазотроне Калифорнийского университета) на нуклонах ядер мишени (мишенью служила медь), в результате которого рождалась пара p − ~ p.

Антипротон отличается от протона знаками электрического заряда и собственного магнитного момента. Антипротон может аннигилировать не только с протоном, но и с нейтроном:

(273.1)

(273.2)

(273.3)

Годом позже (1956) на том же ускорителе удалось получить антинейтрон (n ~) и осуществить его аннигиляцию. Антинейтроны возникали в результате перезарядки антипротонов при их движении через вещество. Реакция перезарядки~ p состоит в обмене зарядов между нуклоном и антинуклоном

и может протекать по схемам

(273.4)

(273.5)

Антинейтрон n ~ отличается от нейтрона n знаком собственного магнитного момента. Если антипротоны

— стабильные частицы, то свободный антинейтрон, если он не испытывает аннигиляции, в конце концов претерпевает распад по схеме

Античастицы были найдены также для π+-мезона,каонов и гиперонов (см. § 274). Однако существуют частицы, которые античастиц не имеют, — это так называемые истинно нейтральные частицы. К

ним относятся фотон, π0-мезониη-мезон(его масса равна 1074 m e, время жизни 710–19 с; распадается

с образованием π-мезоновиγ-квантов).Истинно нейтральные частицы не способны к аннигиляции, но испытывают взаимные превращения, являющиеся фундаментальным свойством всех элементарных частиц. Можно сказать, что каждая из истинно нейтральных частиц тождественна со своей античастицей.

 

 

56

 

 

   

Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.