II.9.4. П олуколичественный спектральный анализ — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

II.9.4. П олуколичественный спектральный анализ

2021-06-23 40
II.9.4. П олуколичественный спектральный анализ 0.00 из 5.00 0 оценок
Заказать работу

 

Полуколичественный анализ включает приемы, с помощью которых определяют приблизительное содержание определяемых компонентов. Методы полуколичественного анализа основаны на сравнении интенсивностей линий или на измерении относительной интенсивности линий. Их можно разделить на три основные группы. К первой группе относятся методы, основанные на сравнении разных спектров, например, так называемая «проверка чистоты». Вторая группа охватывает методы, в которых сравниваются различные линии спектра пробы, например, метод гомологических пар линий. Методы, которые используют корреляцию между шириной спектральной линии и концентрацией определяемого элемента, относятся к третьей группе.

Рассмотрим более подробно метод гомологических пар линий. Большая группа методов полуколичественного спектрального анализа основана на корреляции между относительным количеством элемента в анализируемом материале и относительной интенсивностью спектральных линий. Выбор гомологических спектральных линий в полуколичественном анализе во многом схож с выбором аналитической линии и линии внутреннего стандарта в количественном анализе.

Рис. II.14. Метод гомологических

пар линий

Чтобы легче понять основной принцип метода гомологических пар линий, проведем следующий мысленный эксперимент. Предположим, что концентрация одного из компонентов постепенно уменьшается. В то же время состав материала по другим компонентам остается постоянным. Если условия возбуждения неизменны, то интенсивность линии элемента x, концентрация которого уменьшается, будет постоянно снижаться по отношению к интенсивностям линий элемента r, концентрация которого и, соответственно, интенсивность его спектральных линий сохраняется постоянной. При этом для каждой пары линий x, r 1; x, r 2 и т. д. существует такая концентрация с 1, с 2 и т.д., при которой интенсивности линий в каждой паре оказываются одинаковыми (рис. II.14).

Обычно в качестве элемента r выбирают главный компонент основного материала, поскольку такой выбор обеспечивает большее число пар линий x, r. Если пары линий выбраны удачно, то существует целый ряд значений концентраций, при которых линии этих пар имеют одинаковую интенсивность. Герлах назвал такие пары линий гомологическими парами линий, а значения концентраций, соответствующие им, - гомологическими концентрациями.

Правила по выбору пар линий состоят в следующем.

1. Линии этих пар должны быть как можно ближе друг к другу. Это необходимо, поскольку чувствительность любых систем регистрации изменяется с длиной волны. При выполнении этого условия можно быть уверенным в том, что при одинаковой интенсивности спектральных линий будут одинаковыми и измеренные интенсивности.

2. Выбранная пара линий должна быть гомологической. Это означает, что их относительная интенсивность не должна зависеть от изменений условий возбуждения. По этой причине обычно оказываются непригодными пары линий, относящиеся к нейтральному и ионизованному атому или к атомам, обладающим различной степенью ионизации.

3. Резонансные линии можно использовать только в тех случаях, когда определяемый элемент присутствует в малых количествах.

4. Ширина линий в этих парах должна быть как можно более близкой. Невозможно субъективно установить равенство интенсивностей тонких (резких) и широких (диффузных) линий.

5. Рядом с линиями этих пар не должно быть посторонних линий (особенно линий с относительно высокими интенсивностями и асимметричным расположением). Это мешает установлению равенства интенсивностей линий, так как интенсивность более слабой линии кажется еще меньшей, если эта линия находится вблизи линии с высокой интенсивностью. 

Полуколичественный атомно-эмиссионный анализ с использованием гомологических пар линий можно рассматривать в действительности как «абсолютный» метод, поскольку для него не требуются образцы сравнения. При использовании этого метода в спектре анализируемого материала находят ту гомологическую пару, интенсивности линий которой наиболее близки друг к другу. Таким способом устанавливают приблизительную концентрацию определяемого элемента. Однако на практике интенсивности этих линий обычно не бывают точно равны друг другу. Поэтому содержание определяемого элемента находится между двумя значениями концентрации, относящимися к тем гомологическим парам, для которых разность интенсивностей линий в спектре пробы минимальна. Сравнением этих разностей можно не только установить, к какой гомологической паре линий ближе состав анализируемой пробы, но по возможности оценить интерполяцией промежуточную концентрацию.

Метод гомологических пар линий применяется как в спектрографическом, так и в визуальном вариантах спектрального анализа. При его использовании в визуальном анализе к линиям гомологической пары предъявляют дополнительные требования (помимо приведенных выше). Линии гомологической пары должны находиться как можно ближе друг к другу для того, чтобы они были одного цвета и одновременно наблюдались в окулярную линзу. Между линиями этой пары не должно быть посторонних линий высокой интенсивности. Желательно, чтобы аналитические линии находились в зелено-желтой области спектра, а их интенсивности соответствовали бы интервалу яркости, удобному для визуального наблюдения.

Одно из наиболее важных условий при проведении визуального анализа заключается в максимальном сходстве аналитических линий по ширине, поскольку субъективное сравнение интенсивностей узкой и широкой линий не может быть выполнено достаточно точно. Из-за субъективности восприятия контуров линий из двух линий с одинаковым максимумом интенсивности более интенсивной кажется линия с большей шириной. В то же время вследствие мешающего влияния соседних линий из двух линий с одинаковыми интенсивностью и шириной менее интенсивной кажется та, в окрестности которой находится посторонняя линия высокой интенсивности.

  II.9.5. К оличественный спектральный анализ

 

Методы количественного анализа основаны на рассмотренных выше соотношениях, связывающих интенсивность спектральных линий элемента и его содержание в анализируемой пробе. Количественный спектральный анализ с помощью спектрографа основан на измерении степени почернения изображения спектральных линий на фотопластинке. Цель количественного анализа - определение концентраций по величинам почернений, которые зависят от интенсивности линий в спектре пробы.

Анализ начинается с расшифровки спектра и выбора подходящих аналитических пар линий (линий определяемого элемента и внутреннего стандарта), которые должны удовлетворять следующим требованиям:

1. Аналитические линии должны быть свободными от помех со стороны посторонних линий.

2. Линии аналитической пары должны находиться как можно ближе друг к другу для того, чтобы точность их измерения была выше. При малом различии длин волн связь между почернениями и интенсивностями для обеих линий практически одинакова.

3. Ширина линий аналитической пары должна быть примерно одинаковой.

Следует отметить, что для целей количественного анализа только в исключительных случаях используют абсолютные интенсивности линий. Для этого необходимы высокая стабильность условий возбуждения и надежный способ измерения интенсивности. Однако воспроизводимых во времени условий испарения пробы и излучения ее паров можно добиться только в исключительных условиях, например, при возбуждении спектров в полом катоде или в плазменной струе, но никак не в дуге или искре.

Количественный спектрометрический анализ проводится по той же схеме, что и спектрографический, но в качестве аналитического сигнала выступает не степень почернения изображения аналитической линии на фотопластинке, а непосредственно интенсивность спектральной линии, измеренная фотоэлектрическим приемником.

Таким образом, количественный спектральный анализ сводится к измерению интенсивности аналитической линии определяемого элемента относительно интенсивности спектральной линии элемента сравнения (внутреннего стандарта) и нахождению концентрации определяемого элемента с помощью заранее найденной функции (градуировочной зависимости), связывающей относительную интенсивность спектральной линии и концентрацию элемента. Градуировочные графики строят в координатах f(I) - аналитический сигнал, y (С) - функция концентрации. Аналитический сигнал является функцией интенсивности аналитической линии - интенсивность аналитической линии I или ее логарифм lg (I), плотность почернения S, ðàçíîñòü ïî÷åðíåíèé àíàëèòè÷åñêîé ëèíèè è ëèíèè ñðàâíåíèÿ D S, òîê ôîòîýëåìåíòà è ò. ï.

Метод эмиссионного спектрального анализа, как и любой другой метод измерения концентрации вещества в анализируемом объекте, должен быть метрологически обоснован. Метрологическое обеспечение количественного спектрального анализа осуществляется путем градуировки с помощью стандартных образцов (установление вида градуировочной функции).

Специально изготовленные и многократно проанализированные различными методами анализа стандартные образцы являются эталонами для оценки метрологических характеристик методик спектрального анализа. Наряду с градуировкой методики стандартные образцы состава используются для оценки правильности, чувствительности и предела обнаружения элементов с помощью разработанной методики. Содержания элементов, подлежащих анализу, в стандартных образцах состава известны с высокой точностью.

К стандартным образцам состава предъявляются следующие требования:

1) стандартные образцы, используемые для градуировки, по своему основному составу должны соответствовать тем образцам, которые предполагается анализировать; 

2) определяемые элементы в стандартных образцах должны находиться в таком же химическом соединении, что и в анализируемых пробах;

3) интервалы изменений концентрации определяемых элементов в комплекте стандартных образцов должны быть больше, чем в анализируемых образцах;

4) стандартные образцы должны быть концентрационно однородны по объему и по массе образца;

5) стандартные образцы должны иметь достаточно длительный срок применения, т.е. со временем концентрации элементов в них не должны меняться; если это все-таки происходит, должен быть установлен гарантийный срок использования стандартных образцов.

Очевидно, что доступные стандартные образцы состава не могут охватить все многообразие объектов, подлежащих анализу. Поэтому проблема эталонирования весьма часто встает перед аналитиками, и подход к решению этой задачи, как правило, определяется спецификой разрабатываемой методики и объекта анализа. В практике спектрального анализа часто применяются синтетические смеси химических реактивов, соответствующие по составу анализируемым образцам. Нередки случаи, когда градуировка методики производится по образцам с иной, чем в анализируемой пробе основой. При этом главным критерием соответствия стандартных образцов анализируемым пробам является отсутствие систематической погрешности результатов измерения или расхождения между результатами анализа и истинным содержанием элемента в пробе.

Общую схему спектрографического спектрального анализа можно представить следующим образом. На спектральные пластинки последовательно снимают следующие спектры.

1. Спектры железа - для облегчения поиска спектральных линий в спектрах исследуемых проб и стандартных образцов (как и в качественном спектрографическом анализе).

2. Спектры исследуемых проб. С целью учета возможных флуктуаций условий возбуждения для каждой пробы производят съемку нескольких спектров.

3. Спектры используемых стандартных образцов. Для каждого из них также производят несколько параллельных экспозиций.

Полученная таким образом фотопластинка подвергается соответствующей обработке. После этого с помощью микрофотометра производится фотометрирование - измерение почернения аналитических линий и линий элементов сравнения для каждого спектра. На основании результатов измерений стандартных образцов строится градуировочный график, связывающий разность почернения аналитической линии и линии элемента сравнения с логарифмом концентрации элемента в стандартах. Затем по этому графику определяют содержание элементов в пробах. Последним этапом количественного анализа является статистическая обработка результатов измерения и представление результатов определения. Существует множество различных методов количественного спектрального анализа. Рассмотрим более подробно один из них - метод трех эталонов.

Этот метод применяют в тех случаях, когда есть основания предполагать, что градуировочный график линеен. Для построения графика используют три стандартных образца. Третий стандартный образец необходим для проверки предположения о линейной зависимости между аналитическим сигналом и функцией концентрации. Съемка спектров стандартных образцов при построении градуировочного графика по методу трех эталонов производится на той же пластинке, что и спектров анализируемых проб. Благодаря этому нет необходимости учитывать индивидуальные свойства фотопластинки.

Важным преимуществом этого метода является то, что он отличается минимальной погрешностью операции перехода от почернений, даваемых аналитической линией и линией сравнения, к концентрации определяемого элемента в пробе. Недостаток метода трех эталонов - необходимость большого числа съемок спектров стандартных образцов. Помимо большого расхода стандартов это непроизводительно и с точки зрения использования значительной площади фотопластинки.

Общие принципы спектрометрического анализа аналогичны принципам спктрографического анализа, но в качестве аналитического сигнала используется выходной сигнал (или функция сигнала) фотоэлектрического приемника.

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.