Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Топ:
Устройство и оснащение процедурного кабинета: Решающая роль в обеспечении правильного лечения пациентов отводится процедурной медсестре...
Проблема типологии научных революций: Глобальные научные революции и типы научной рациональности...
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Интересное:
Аура как энергетическое поле: многослойную ауру человека можно представить себе подобным...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом...
Дисциплины:
2017-05-23 | 439 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Моторное масло
Система смазки
К числу наиболее важных смазываемых узлов и деталей двигателей относятся КШМ, ГРМ, цилиндропоршневая группа.
Основными элементами системы смазки ДВС являются: ёмкость для хранения масла (поддон картера), масляная магистраль, масляный насос, масляные фильтры. В современных ДВС автомобилей и тракторов системы смазки комбинированные: детали смазываются принудительно (под давлением), разбрызгиванием и самотёком.
Масло под давлением подаётся к коренным и шатунным подшипникам коленчатого вала, подшипникам кулачкового вала ГРМ, а разбрызгиванием смазываются зеркала цилиндров, поршни и т.д.
Требования к качеству масел
Требования, предъявляемые к качеству масел, определяются спецификой рабочего процесса и конструкцией двигателя. Считается, что условия работы в поршневых двигателях наиболее тяжёлые по сравнению с другими двигателями. Это объясняется температурным режимом работы масла в ДВС. Например, в камере сгорания температура достигает 25000С. Температура газов, прорывающихся в картер на такте сжатия в бензиновом двигателе 150…4500С, в дизеле – 500…700 0С.
Для современных двигателей температура первой поршневой канавки достигает 270…2800С, а при наддуве – 300…3500С, рабочая температура масла в картере находится пределах 50…1000С.
Дополнительные требования к качеству масел объясняются тем, что двигатели эксплуатируются в широких пределах изменения температуры окружающего воздуха, например, в нашей климатической зоне от + 30…35 и даже 400С летом до – 30 …35 и даже 400С. На Севере этот разброс температур ещё шире. Исходя из этого, рабочий диапазон моторного масла по температуре очень широк – от температуры окружающего воздуха до рабочей температуры масла.
|
Кроме общих требований к моторным маслам предъявляются и дополнительные. Например, уплотнять зазор в сопряжённых деталях и прежде всего в цилиндропоршневой группе, обладать нейтрализующими свойствами.
Многие функции и требования, предъявляемые к моторным маслам, взаимосвязаны. Например, отвод тепла от деталей и уплотнение зазоров в их сопряжении. При плохом уплотнении газы прорываются в картер, нарушая сплошность масляной плёнки, что приводит к перегреву деталей цилиндропоршневой группы.
Исходя из вышесказанного, можно сформулировать следующие требования к моторному маслу, оно должно:
1. иметь вязкость, обеспечивающую надёжную смазку двигателя при всех рабочих температурах с наименьшими потерями на трение;
2. обладать низкотемпературными свойствами для облегчения пуска двигателя в зимнее время;
3. иметь хорошие моющие и диспергирующие свойства для необходимой чистоты цилиндро-поршневой группы и других деталей;
4. обладать высокими противоокислительными свойствами для торможения процессов окисления масла в двигателе и уменьшения накопления продуктов окисления в масле, составляющих основу для нагара и отложений;
5. защищать от коррозии подшипники из цветных металлов и от ржавления остальные детали;
6. уменьшать износ деталей;
7. препятствовать прорыву газов из камеры сгорания в картер путём заполнения зазоров между поршневыми кольцами и зеркалом цилиндра. При пуске это улучшает компрессию, при работе уменьшает попадание продуктов сгорания;
8. не содержать токсичных компонентов;
Эксплуатационные свойства
Смазочные и противокоррозионные. В процессе работы ДВС происходит изменение размеров и формы трущихся деталей: цилиндр-поршень, вал-подшипник, кулачок-толкатель и др. Для цилиндро-поршневой группы характерны, например, адгезионный и абразивный износы. При этом последний может возникать из-за твёрдых частичек нагары, попадающих между гильзой и поршнем из камеры сгорания. Для пары вал-подшипник характерны коррозионный и адгезионный виды износа. Для пары кулачок-толкатель – питтинг, возникающий из-за высоких ударных нагрузок.
|
Увеличение износа более вероятно при переходе от гидродинамического к граничному трению. Такой переход возможен в результате повышения температуры, удельных нагрузок и скорости скольжения в зоне трения контактируемых деталей. Удельное давление в зоне компрессионных колец составляет 0,15…0,30 МПа, маслосъёмных колец – 0,5…1,3 МПа, в подшипниках коленчатого вала – 20…30 МПа при скорости скольжения до 15 м/с. Наибольшие нагрузки (ударные) испытывает пара кулачок-толкатель, где давление достигает 500…700 МПа, а в отдельных случаях 2100 МПа.
Уменьшение скорости скольжение трения также способствует реализации граничного режима. Например, гидродинамический режим смазки возможен в паре кольцо-гильза в средней части поршня. Вблизи мёртвых точек, когда движение поршня замедлено также появляется граничный режим трения. Как правило, максимальный износ гильзы цилиндра наблюдается в месте остановки 1ого компрессионного кольца.
Подшипники коленчатого вала работают преимущественно в режиме гидродинамической смазки. Граничный режим возникает лишь в момент пуска или при перегрузках.
На интенсивность изнашивания кроме конструктивных особенностей влияет эксплуатация, в частности сорт применяемого масла и топлива. Например, повышенное содержание серы в топливе ускоряет износ цилиндро-поршневой группы. Резко увеличивается износ деталей двигателя при использовании спиртовых альтернативных топлив и особенно метанола, как в чистом виде, так и в смеси с бензином.
На пусковые износы большое влияние оказывает температура: чем она выше, тем меньше износ, так как создаются благоприятные возможности для лучшего поступления масла к трущимся деталям.
Износ увеличивается и за счёт повышения химической активности масла, что видно на паре вал-подшипник. Вкладыш изготавливается из сплавов цветных металлов менее стойких к химической повреждаемости, чем вал. Отсюда потери массы вкладышей из-за химического и коррозионно-химического износа.
Для подавления коррозионных процессов в двигателе используют следующие пути:
|
нейтрализацию кислых продуктов в работавшем масле;
замедление процессов окисления масла;
создание на металле защитной плёнки.
По первому пути применяют высокощелочные присадки, нейтрализующие кислые продукты. При этом в отработавшем полностью срок службы масле ещё остаётся некоторый запас щелочных свойств.
По второму пути применяют в маслах присадки, замедляющие окисление масла, разрушающие гидроперекиси и превращающие активные радикалы в неактивное состояние.
По третьему пути в масло вводят присадки, образующие прочные защитные плёнки на поверхности подшипников. При этом необходимо учитывать, что чрезмерный запас моющих свойств у масла при повышенных температурах может привести к разрушению противокоррозионных плёнок на металле и вызвать повышенную коррозию подшипников.
Уменьшение износа и повышение надёжности работы двигателя достигается конструктивными мерами. Например, хромирование или покрытие молибденом поршневых колец, изменение числа колец и их формы, использование вставок в гильзе из жаропрочного твёрдого материала, изменение конструкции поршня и т.д.
Однако изменением состава масла можно так же добиться уменьшение износа сопряжённых деталей. Для этого к маслу добавляют противоизносные противозадирные присадки. Действие противоизносных присадок заключается в следующем:
в адсорбции присадок на поверхности металла и создании граничных плёнок;
в химическом взаимодействии присадок с металлом в зонах контакта и создании прочных сульфидных и фосфидных плёнок;
в сглаживании и полировке микровыступов трущихся поверхностей, приводящем к снижению удельных нагрузок и уменьшению износов.
Тип присадки и её концентрация подбирается с учётом максимального эффекта без нежелательных последствий: снижение антиокислительных, моющих и др. свойств.
Например, снижение износа, вызываемого продуктами неполного сгорания топлива, возможно за счёт увеличения щёлочности масла и повышения таким образом его нейтрализующей активности.
Однако излишняя щёлочность может быть причиной повышения химической активности системы. Кроме того, высокая щёлочность повышает зольность масла, активизирующей абразивный износ.
|
Большое внимание уделяется антифрикционным свойствам масел. Улучшение антифрикционных свойств позволяет снизить потери мощности на трение и в результате уменьшить расход топлива.
Снижение трения достигается как конструктивными мерами, так и улучшение антифрикционных свойств масла. При этом либо регулируют вязкость масла (уменьшение внутреннего трения), либо используют антифрикционные присадки (уменьшение внешнего трения). Используют и комбинированный способ.
За счёт регулирования вязкостных свойств, при замене нефтяных масел на загущенные и синтетические можно в среднем снизить расход топлива на 8…10 %, а при применении модификаторов трения – на 3…5 %.
Вязкостно-температурные свойства. Вязкость (внутреннее трение) – свойство жидкости оказывать сопротивление относительному перемещению слоёв.
Величина вязкости выражается в единицах кинематической вязкости сСт (мм2/с) или динамической вязкости сПз (Па*с). Перевод одних единиц в другие осуществляется по формуле:
где n – кинематическая вязкость;
h – динамическая вязкость;
d – плотность масла.
С повышение давления между трущимися деталями вязкость масла возрастает. С понижением температуры вязкость масла возрастает вплоть до потери текучести.
Для характеристики вязкостных свойств масла иногда используют индекс вязкости (ИВ), характеризующий степень изменения вязкости масла в зависимости от температуры.
Для определения ИВ необходимо знать вязкость масла при 50 0С и 100 0С.
Требования к вязкостно-температурным свойствам моторных масел противоречивы. С одной стороны, для обеспечения надёжного запуска двигателя при низких температурах масло должно иметь невысокую вязкость, т.е. обладать высокой подвижностью. Это позволяет добиться хороших пусковых свойств и прокачиваемости, обеспечить надёжную смазку трущихся деталей в момент пуска. С другой стороны, при высоких рабочих температурах масла, характерных для установившихся режимов работы двигателя, необходима высокая вязкость масла для предотвращения перехода к граничному режиму смазки и повышению износа.
Для осуществления надёжности пуска требования к вязкостно-температурным свойствам масел регламентированы стандартом, в соответствии с которым вязкость масел для бензиновых двигателей должна быть при 100 0С не менее 6 мм2/с (кинематическая), а при – 40 0С не более 170 Па*с (динамическая). Масла для дизелей при этих же условиях должно иметь вязкость не менее 8 мм2/с и не более 220 Па*с соответственно. Чем меньше вязкость при отрицательной температуре, тем при более низкой температуре можно достичь требуемого минимального числа оборотов коленчатого вала и при более низкой температуре запустить двигатель.
|
Всесезонные масла получают путём загущения маловязкой минеральной основы полимерной присадкой. Масла, полученные с использованием синтетических продуктов, превосходят по вязкостно-температурным свойствам загущенные масла:
При одной и той же вязкости при положительных температурах они обладают меньшей вязкостью при отрицательных температурах.
Использование масел, имеющих высокую вязкость при рабочих температурах, необходимо для снижения износа деталей двигателя. С другой стороны с увеличением вязкости масла повышаются потери мощности на трение, следовательно, и увеличивается расход топлива. Таким образом, выбор вязкости масла должен учитывать условия применения и особенности конструкции двигателя.
Защитные свойства. Качество моторного масла и надёжность работы двигателя резко снижаются при наличии в масле воды, которая может попадать в масло при хранении и в период эксплуатации. Присутствие в масле 1…2 % воды в 5 раз повышает износ цилиндро-поршневой группы и в 1,4…1,6 раз износ вкладышей. Кроме того, попадание воды в масло усиливает пенообразование, снижает щелочное число, приводит к выпадению из масла присадок.
Особую опасность представляет собой попадание водяных паров и конденсация влаги в двигателе, находящемся на длительном хранении. В этот период интенсивно развиваются процессы электрохимической коррозии, при которой протекают два сопряжённых процесса: анодный – переход металла в раствор в виде ионов с оставлением эквивалентного количества электронов в металле и катодный – ассимиляция появившихся в металле избыточных электронов каким-либо деполяризатором (кислородом, продуктами окисления масла). При последующей эксплуатации таких двигателей увеличивается износ их деталей. Так, износ на 1000 км пробега для автомобилей длительного хранения во влажной атмосфере по сравнению с автомобилями непрерывной эксплуатации оказывается больше по цилиндрам в 1,5…2 раза, по поршням в 1,5 раза и по шейкам коленчатого вала на 10…15 %.
Для защиты двигателей от «ржавления» в процессе хранения в моторные масла вводят ингибиторы коррозии. В зависимости от типа используемого ингибитора и его концентрации получают консервационные, консервационно-рабочие и рабоче-консервационные масла. Введение в моторное масло ингибиторов коррозии не только снижает «ржавление», но и в ряде случаев позволяет уменьшить износ деталей в процессе работы.
Антиокислительные и моющие свойства. Для облегчения нормальной и безотказной работы двигателей необходимо, чтобы моторное масло обладало высокими антиокислительными и моющими свойствами. Иначе в процессе эксплуатации двигателя происходит образование повышенного количества углеродистых отложений, отрицательно сказывающихся на технических характеристиках двигателя.
Углеродистые отложения, образующиеся в двигателе, подразделяют на нагары (высокотемпературные отложения), лаки (среднетемпературные отложения) и осадки (низкотемпературные отложения).
Нагары получаются вследствие термического разложения масла, окисления и полимеризации продуктов его разложения, а также за счёт несгоревшего топлива. Нагары откладываются преимущественно на стенках камеры сгорания, днище поршня, верхнем пояске боковой поверхности поршня.
Лаковые отложения, как правило, образуются в канавках поршневых колец, на гильзах цилиндров и на боковой поверхности поршня.
Осадки откладываются в картере и клапанной коробке, в маслосистеме и на фильтрах. Их образование обусловлено прорывом газов из камеры сгорания, попаданием воды в масло и др. причинами. Осадки представляют собой большую опасность, так как они могу забивать маслопроводы и фильтры. Это приводит к нарушению нормальной подачи масла к узлам трения и приводит к выходу их из строя.
Несмотря на общие черты, характер образования отложений различен в зависимости от условий работы двигателя и особенностей его конструкции. Например, в дизеле большую долю составляют высокотемпературные, а в бензиновом двигателе - низкотемпературные отложения.
Для снижения склонности моторных масел к образованию отложений повышают уровень их качества за счёт улучшения антиокислительных и моющих свойств.
Повышение антиокислительных свойств добиваются подбором масляной основы, в меньшей степени склонной к окислению или введением антиокислительных присадок. Одновременно с этим к маслу добавляют моющие присадки. Они, с одной стороны, могут повлиять на процесс окисления, а с другой стороны, препятствуют отложению углеродистых образований на детали двигателя. В масло для бензиновых двигателей помимо зольных моющих присадок вводят и беззольные диспергирующие присадки для борьбы с образование низкотемпературных отложений.
Противопенные свойства. При работе масла в двигателе создаются благоприятные условия для образования пены. Этому способствует перемешивание масла с воздухом вследствие вращающихся деталей КШМ, наличие в масле следов воды и ряда стабилизирующих пену веществ: продуктов окисления масла.
Обильное пенообразование нарушает нормальные условия режима смазки.
Для устранения пенообразования в масло вводят противопенные присадки.
Действие противопенных присадок заключается в том, что, являясь соединениями относительно плохо растворяющимися в маслах, они находятся в основном на поверхностях раздела фазы воздух-масло. В результате этого скорость разрушения пены становится больше, чем скорость её образования.
Образование на границе воздух-масло барьера из молекул присадки создаёт определённые трудности для прохождения кислорода вглубь масла. Предполагают, что это свойство противопенных присадок повышает стойкость масла к окислению.
Пенообразование уменьшается с повышением температуры масла, так как при этом вязкость масла снижается и стойкость пены падает.
Попадание воды в масло приводит к увеличению пенообразования: из масла капельки воды начинают испаряться, приводя к зарождению отдельных газовых пузырьков, а затем и пены.
Замечено, что наиболее часто пенообразование наблюдается в двигателях с «сухим» картером, чем в двигателях с «мокрым» картером.
Классификация до 1974 года
Назначение:
А – карбюраторные двигатели.
Д – автотракторные и судовые дизели.
МТ – транспортные дизели.
М – поршневые авиационные двигатели.
Особенности технологии:
К – кислотная очистка.
С – селективная очистка.
П – масло с присадками.
З – загущенное масло.
Цифры - значение вязкости в мм2/с при 100 0С.
Например, АС-8; АСЗп-6; МС-20 и т.д.
В соответствии с ГОСТ 17479.1-85 «Обозначение нефтепродуктов. Масла моторные» моторные масла подразделяют на классы по вязкости и группы по области применения.
Обозначение состоит из групп знаков: первая группа - буква М (моторное) не зависит от состава и свойств масел; вторая группа – цифры, характеризующие класс кинематической вязкости; третья группа – прописные буквы с индексами, обозначают принадлежность к группе масел по эксплуатационным свойствам.
В таблице 9 представлены классы кинематической вязкости моторных масел. Дробные классы указывают, что по вязкости при температуре –180 С масло соответствует классу, указанному в числителе, по вязкости при 1000 С – классу, указанному в знаменателе.
Таблица 9
Класс вязкости моторных масел, мм2/с (сСт)
Класс вязкости | Кинематическая вязкость при температуре | |
1000 С | - 180 С | |
3з 4з 5з 6з 3з/8 4з/6 4з/8 4з/10 5з/10 5з/12 5з/14 6з/10 6з/14 6з/16 | Не менее 3,8 Не менее 4,1 Не менее 5,6 Не менее 5,6 5,6…7,0 7,0…9,5 9,5…11,5 11,5…13,0 13,0…15,0 15,0…18,0 18,0…23,0 7,0…9,5 5,0…7,0 7,0…9,5 9,5…11,5 9,5…11,5 11,5…13,0 13,0…15,0 9,5…11,5 13,0…15,0 15,0…18,0 | - - - - - - - |
В зависимости от области применения моторные масла делят на группы А, Б, В, Г, Д, Е (табл. 10). При этом индекс 1 присваивают маслам для бензиновых двигателей, индекс 2 – для дизелей. Универсальные масла, предназначенные для дизелей и бензиновых двигателей одного уровня форсирования, индекса в обозначении не имеют. Универсальные масла, принадлежащие к разным группам, имеют двойное обозначение, в котором первое характеризует качество масла при применении в дизелях, второе – в бензиновых двигателях.
Примеры обозначения.
М-8-В1
моторное масло, восьмого класса вязкости для среднефорсированных бензиновых двигателей;
М-4з/8-В2Г1
моторное масло, 4/8 класса вязкости, для среднефорсированных дизелей и высокофорсированных бензиновых двигателей.
Таблица 10
|
|
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!