Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона. — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.

2021-01-31 144
Многолучевая интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона. 0.00 из 5.00 0 оценок
Заказать работу

Многолучевая интерференция – участие в интерференции более 2 когерентных лучей.

В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность.

Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.

Интерферометры – оптические приборы, основанные на явлении интерференции световых волн. Они получили наибольшее распространение как приборы для измерения длин волн спектральных линий и их структуры; для измерения показателя преломления прозрачных сред; в метрологии для абсолютных и относительных измерений длин и перемещений объектов; измерения угловых размеров звезд; для контроля формы и деформации оптических деталей и чистоты металлических поверхностей. Принцип действия основан на пространственном разделении пучка света с целью получения нескольких когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции.

Параллельный пучок света от источника L падает на полупрозрачную пластину P1, разделяется на два когерентных пучка 1 и 2. После отражения от зеркал M1 и M2 и повторного прохождения луча 2 через пластину P1 оба луча проходят в направлении АО через объектив О2 и интерферируют в его фокальной плоскости. Пластина P2 компенсирует разность хода

между лучами 1 и 2, возникающую из-за того, что луч 2 дважды проходит через пластину P1, а луч 1 ни одного.

 

 

4

Принцип Гюйгенса — Френеля

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Теория Френеля

 Исследование дифракции было завершено в работах О. Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и разработал количественную теория дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.

 Этих успехов Френель добился, объединив принцип Гюйгенса с идеей интерференции вторичных волн. Согласно идее Френеля каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны. В этом и заключается принцип Гюйгенса — Френеля.

Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями, например, в близи границ прозрачных или непрозрачных тел, сквозь малые отверстия. Дифракция, в частности, приводит к огибанию световыми волнами препятствий, и проникновению света в область геометрической тени. Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в рез-тате суперпозиции волн. Перераспределение интенсивности, возникающее вследствие суперпозиции волн, возбуждаемых когерентными источниками, принято называть дифракцией волн. Поэтому говорят, например, об интерференционной картине от двух узких щелей и о дифракционной картине от одной щели. Различают два вида дифракции. Если источник 8 и точка наблюдения Р расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р, образуют практически параллельные пучки, говорят о дифракции Фраунгофера (диф. в параллельных лучах). В противном случае говорят о диф. Френеля.

Дифракция Френеля от круглого отверстия и от диска. 1. От круглого отверстия. Поставим на пути сферической световой волны (т.е. для которой А убывает как 1/r, r – расстояние,, отсчитываемое вдоль направления распространения световой волны) непрозрачный экран. Расположим его так, чтобы перпендикуляр, опущенный из источника света S,попал в центр отверстия. На продолжении этого перпендикуляра возьмем точку Р. При радиусе отверстия r0, значительно меньшем, чем указанные на рис. длины a и b, длину a можно считать равной расстоянию от источника S, допреграды, а длину b - от расстояния преграды до Р. Если расстояния а и b довлетворяют

соотношению: r0 =√abm(лямда)/(a+b), где m-

целое число, то отверстие оставит открытым ровно m первых зон Френеля, построенных для т. Р. Следовательно, число открытых зон будет:

, а амплитуда в точке Р будет

Равна, знак минус берется, если m - нечетное и плюс - четное. 2. Дифракция от круглого диска. Поместим между источником света S и точкой наблюдения Р непрозрачный диск радиуса r0. Если диск

закроет m первых зон Френеля, амплитуда в точке Р будет равна:

Зонные пластинки. Из теории Френеля (световая волна, возбуждаемая каким-либо источником S, может быть представлена как р-тат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками, такими источниками могут служить бесконечно малые элементы любой замкнутой пов-ти, охватывающей источник S). следует, что в том случае, когда в отверстии кладывается только одна зона Френеля, амплитуда колебаний в точке М А=А1 т.е.

вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (соответственно

интенсивность в точке М .

Амплитуда А можно значительно увеличить с помощью с помощью зонной пластинки – стеклянной пластинки, но пов-ть которой так нанесено непрозрачное покрытие, что оно закрывает все четные зоны Френеля и оставляет открытыми все нечетные зоны (либо наоборот). Если общее число зон, уменьшающихся на пластинке, равно 2к, то Если

2к не слишком велико, то A2k-1 ≈A1 и

, т.е. освещенность экрана в точке М в к2

раз больше, чем при беспрепятственном распространении света от источника в точку М. Зонная пластинка действует на свет подобно собирающей линзе.

 

5

Дифракция Фраунгофера на щели (ширина щели, щель освещается слева плоской нормально падающей волной)

Это задача аналогична нахождению спектра

прямоугольного импульса

Распределение интенсивности 

C уменьшением ширины щели уширяется пространственный спектр - спектр плоских волн, бегущих от щели.

 

Дифракция Фраунгофера на круглом отверстии.

Наблюдается картина (a). Соответствующий график показан на рис (б). Угловая полуширина пятна Эйри (главного максимума в картине) определяется условием

В телесном угле сосредоточена подавляющая доля потока энергии дифрагированной волны.

( диф реш как спект приб)

Дифракция Фраунтгофера это дифракция в параллельных лучах.В случае дифракции в параллельных лучах амплитуда вторичных волн одинакова для любого элемента, не зависит от расстояния до точки наблюдения, и коэффициент пропорциональности С(ϕ) = 1. Это означает что результирующую амплитуду световых колебаний в точке наблюдения для случая дифракции Фраунгофера можно записать в виде:

Интенсивность:

График распределения интенсивности Iϕ в зависимости от sinϕ имеет вид:

 

Дифракционная картина четче когда

размеры щели сопоставимы с длинной волны

Дифракционная решетка – система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками.

Дифракционная решетка — спектральный прибор, служащий для разложения света в спектр и измерения длины волны. Решетки в зависимости от их применения бывают металлическими или стеклянными. На эти решетки наносится большое число параллельных штрихов: лучшие металлические решетки имеют до 2000 штрихов на один миллиметр поверхности. При этом общая длина решетки составляет 100 — 150 мм. Наблюдения на металлических решетках проводятся только в отраженном свете, а на стеклянных — чаще всего в проходящем свете

Разности хода лучей от двух соседних щелей будут одинаковы в пределах всей дифракционной решетки: Δ = d * sinφ

Условие главных максимумов: d * sinφ = ± m λ (m =1,2,3…)

Условие главных минимумов: a * sinφ = ± m λ (m =1,2,3…)

 

6

Голография – метод получения объемного изображения объекта путем регистрации и последующего восстановления волн, изобретенный английским физиком венгерского происхождения Д. Габором в 1948 г.

Голография основывается на двух физических явлениях - дифракции и интереференции световых волн.

 Физическая идея состоит в том, что при наложении двух световых пучков, при определенных условиях возникает интерференционная картина, то есть, в пространстве возникают максимумы и минимумы интенсивности света (это подобно тому, как две системы волн на воде при пересечении образуют чередующиеся максимумы и минимумы амплитуды волн). Для того, чтобы эта интерференционная картина была устойчивой в течение времени, необходимого для наблюдения, и ее можно было записать, эти две световых волны должны быть согласованы в пространстве и во времени. Такие согласованные волны называются когерентными.

 Если волны встречаются в фазе, то они складываются друг с другом и дают результирующую волну с амплитудой, равной сумме их амплитуд. Если же они встречаются в противофазе, то будут гасить одна другую. Между двумя этими крайними положениями наблюдаются различные ситуации сложения волн. Результирующая сложения двух когерентных волн будет всегда стоячей волной. То есть интерференционная картина будет устойчива во времени. Это явление лежит в основе получения и восстановления голограмм.

Обычные источники света не обладают достаточной степенью когерентности для использования в голографии. Поэтому решающее значение для ее развития имело изобретение в 1960 г. оптического квантового генератора или лазера - удивительного источника излучения, обладающего необходимой степенью когерентности и могущего излучать строго одну длину волны.

Деннис Габор, изучая проблему записи изображения, выдвинул замечательную идею. Сущность ее реализации заключается в следующем. Если пучок когерентного света разделить на два и осветить регистрируемый объект только одной частью пучка, направив вторую часть на фотографическую пластинку, то лучи, отраженные от объекта, будут интерферировать с лучами, попадающими непосредственно на пластину от источника света. Пучок света, падающий на пластину, назвали опорным, а пучок, отраженный или прошедший через объект, предметным. Учитывая, что эти пучки получены из одного источника излучения, можно быть уверенным в том, что они когерентны. В данном случае интерференционная картина, образующаяся на пластинке, будет устойчива во времени, т.е. образуется изображение стоячей волны

 

 

7

При действии света на вещество основное значение имеет электрическая составляющая электромагнитного поля световой волны, поскольку именно она оказывает основное действие на электроны в атомах вещества.

Свет представляет собой суммарное электромагнитное излучение множества независимо излучающих атомов. Поэтому все ориентации вектора Е будут равновероятны. Такой свет называется естественным.

Поляризованным светом называется свет, в котором направления колебания вектора Е каким либо образом упорядочены. Частично-поляризованный свет – свет с преимущественным направлением колебаний вектора Е. Плоскополяризованный свет – свет в котором Е колеблется только в одной, проходящей через луч плоскости – плоскости поляризации.

Если естественный свет падает на границу раздела двух диэлектриков, то отраженный и преломленный лучи являются частично поляризованными. В отраженном луче преобладают колебания перпендикулярные плоскости падения, а в преломленном – колебания, лежащие в плоскости падения. Если угол падения равен углу Брюстера, который определяется соотношением tg αB = n 21, то отраженный луч является плоскополяризованным. Преломленный луч в этом случае поляризуется максимально, но не полностью. При этом отраженный и преломленный лучи взаимно перпендикулярны.

 

 

8


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.