Расчет интерференционной картины от двух источников. — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Расчет интерференционной картины от двух источников.

2021-01-31 114
Расчет интерференционной картины от двух источников. 0.00 из 5.00 0 оценок
Заказать работу

Показатель преломления

Скорость распространения света в среде, как и любой электромагнитной волны,

где - показатель преломления среды, т.к. μ = 1 для большинства прозрачных веществ

Световой вектор - это вектор напряженности электрического поля световой (электромагнитной!) волны.

Рассмотрим нормальную электромагнитную волну, падающую на границу раздела двух диэлектриков (см. рис. 1). Напомним, что нормальными электромагнитными волнами в однородной изотропной среде называется нетривиальное решение уравнений Максвелла, удовлетворяющее материальным уравнениям и имеющее вид (1.1):

Рис. 1. Падение нормальной электромагнитной волны на границу раздела двух диэлектриков.

Материальные уравнения для однородной изотропной среды имеют вид:

B= μH

D=εE где e - диэлектрическая проницаемость среды, m - магнитная проницаемость среды.

Геометрическая оптика

 

2) Интерференцию света можно объяснить, рассматривая интерференцию волн. Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны — неограниченные в пространстве волны одной определенной и строго постоянной частоты. Taк как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. Поэтому на опыте не наблюдается интерференция света от независимых источников, например от двух электрических лампочек

1.Если волны некогерентны,тогда разность фаз меняется хаотически,тогда среднее значение соsδ =0,тогда интерференциальный член  стремится к 0

2.Пусть δ=соnst эти волны становятся когерентны

Соsδ>0 I>I1+I2 max

соsδ <0 I< I1+I2 min

Пространственое перераспределение светового потока при наложении когерентных волн-интерференцией света

Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1 = А1cos(wt + j1) и x2 = A2cos(wt + j2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке A2 = A2l + A22 + 2A1A2 cos(j2 - j1) (см. 144.2)). Так как волны когерентны, то cos(j2 - j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1~А2)

               (172.1)

В точках пространства, где cos(j2 - j1) > 0, интенсивность I > I1 + I2, где cos(j2 - j1) < О, интенсивность I < I1 + I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность (j2 - j1) непрерывно изменяется, поэтому среднее во времени значение cos(j2 - j1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I1 = I2 равна 2I1 (для когерентных волн при данном условии в максимумах I = 4I1 в минимумах I = 0).

Как можно создать условия, необходимые для возникновения интерференции световых волн? Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n2 прошла путь s1, вторая - в среде с показателем преломления n2 - путь s2. Если в точке О фаза колебаний равна wt, то в точке М первая волна возбудит колебание А1cosw(t – s1/v1), вторая волна - колебание А2cosw(t – s2/v2), где v1 = c/n1, v2 = c/n2 - соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

 

 (учли, что w/с = 2pv/с = 2pl0 где l0 - длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a D = L2 – L1 - разность оптических длин проходимых волнами путей - называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

                           (172.2)

то d = ±2pm, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

                (172.3)

то d = ±(2m + 1)p, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

Интерференционые схемы

1)Метод деления амплитуды волны

2)Метод деления волнового фронта

Исходя из этого используют следующие интерф-е схемы

Способы получения интерференционных картин.

Метод Юнга. Свет от ярко освещено щели падает на две щели играющие роль когерентных источников.

Зеркала Френеля. Свет от источника падает расходящимся пучком на 2 плоских зеркала, расположенных под малым углом. Роль когерентных источников играют мнимые изображения источника. Экран защищен от прямого попадания лучей заслонкой.

Бипризма Френеля. Свет от источника преломляется в призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых когерентных источников.

Зеркало Ллойда. Точечный источник находится близко к поверхности плоского зеркала. Когерентными источниками служат сам источник и его мнимое изображение.

 

 

3)

Волновые свойства частиц

Показатель преломления

Скорость распространения света в среде, как и любой электромагнитной волны,

где - показатель преломления среды, т.к. μ = 1 для большинства прозрачных веществ

Световой вектор - это вектор напряженности электрического поля световой (электромагнитной!) волны.

Рассмотрим нормальную электромагнитную волну, падающую на границу раздела двух диэлектриков (см. рис. 1). Напомним, что нормальными электромагнитными волнами в однородной изотропной среде называется нетривиальное решение уравнений Максвелла, удовлетворяющее материальным уравнениям и имеющее вид (1.1):

Рис. 1. Падение нормальной электромагнитной волны на границу раздела двух диэлектриков.

Материальные уравнения для однородной изотропной среды имеют вид:

B= μH

D=εE где e - диэлектрическая проницаемость среды, m - магнитная проницаемость среды.

Геометрическая оптика

 

2) Интерференцию света можно объяснить, рассматривая интерференцию волн. Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Этому условию удовлетворяют монохроматические волны — неограниченные в пространстве волны одной определенной и строго постоянной частоты. Taк как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны. Поэтому на опыте не наблюдается интерференция света от независимых источников, например от двух электрических лампочек

1.Если волны некогерентны,тогда разность фаз меняется хаотически,тогда среднее значение соsδ =0,тогда интерференциальный член  стремится к 0

2.Пусть δ=соnst эти волны становятся когерентны

Соsδ>0 I>I1+I2 max

соsδ <0 I< I1+I2 min

Пространственое перераспределение светового потока при наложении когерентных волн-интерференцией света

Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х1 = А1cos(wt + j1) и x2 = A2cos(wt + j2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке A2 = A2l + A22 + 2A1A2 cos(j2 - j1) (см. 144.2)). Так как волны когерентны, то cos(j2 - j1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1~А2)

               (172.1)

В точках пространства, где cos(j2 - j1) > 0, интенсивность I > I1 + I2, где cos(j2 - j1) < О, интенсивность I < I1 + I2. Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность (j2 - j1) непрерывно изменяется, поэтому среднее во времени значение cos(j2 - j1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I1 = I2 равна 2I1 (для когерентных волн при данном условии в максимумах I = 4I1 в минимумах I = 0).

Как можно создать условия, необходимые для возникновения интерференции световых волн? Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n2 прошла путь s1, вторая - в среде с показателем преломления n2 - путь s2. Если в точке О фаза колебаний равна wt, то в точке М первая волна возбудит колебание А1cosw(t – s1/v1), вторая волна - колебание А2cosw(t – s2/v2), где v1 = c/n1, v2 = c/n2 - соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

 

 (учли, что w/с = 2pv/с = 2pl0 где l0 - длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a D = L2 – L1 - разность оптических длин проходимых волнами путей - называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

                           (172.2)

то d = ±2pm, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

                (172.3)

то d = ±(2m + 1)p, и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

Расчет интерференционной картины от двух источников.

.

Щели S1 и S2 находятся на расстоянии d друг от друга и являются когерентными (реальными или мнимыми изображениями источника S в какой-то оптической системе) источниками света. Интерференция наблюдается в произвольной точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l≫d. Начало отсчета выбрано в точке О, симметричной относительно щелей.

 

Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода D = s2 – s1 (см. § 172). Из рис. 248 имеем

 откуда s22 - s21 = 2xd, или

Из условия l≫d следует, что s1 + s2» 2l, поэтому

                                              (173.1)

Подставив найденное значение D (173.1) в условия (172.2) и (172.3), получим, что максимумы интенсивности будут наблюдаться в случае, если

 (173.2)

 а минимумы -- в случае, если

              (173.3)

 Расстояние между двумя соседними максимумами (или минимумами), называемое шириной интерференционной полосы, равно

                             (173.4)

Dх не зависит от порядка интерференции (величины m) и является постоянной для данных l, d и l0. Согласно формуле (173.4), Dx обратно пропорционально d; следовательно, при большом расстоянии между источниками, например при d» l, отдельные полосы становятся неразличимыми. Для видимого света l0» 10-7 м, поэтому четкая, доступная для визуального наблюдения интерференционная картина имеет место при l≫d (это условие и принималось при расчете). По измеренным значениям l, d в Dх, используя (173.4), можно экспериментально определить длину волны света. Из выражений (173.2) и (173.3) следует, таким образом, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m = 0, проходит через точку О. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m = 1), второго (m = 2) порядков и т. д.

Описанная картина, однако, справедлива лишь при освещении монохроматическим светом (l0 = const). Если использовать белый свет, представляющий собой непрерывный набор длин волн от 0,39 мкм (фиолетовая граница спектра) до 0,75 мкм (красная граница спектра), то интерференционные максимумы для каждой длины волны будут, согласно формуле (173.4), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0 максимумы всех длин волн совпадают, и в середине экрана будет наблюдаться белая полоса, по обе стороны которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т. д. (ближе к белой полосе будут находиться зоны фиолетового цвета, дальше - зоны красного цвета).

Тонкие пленки, такие, как мыльные пузыри или нефтяные пятна на воде, обычно сияют всеми цветами радуги. Часть света, проходящего через пленку, отражается от ее внутренней поверхности и интерферирует с проходящим светом. Проходя пути различной длины, волны, соответствующие некоторым цветам, на (А) – красному, оказываются в фазе и усиливают друг друга. Другие волны, на (В) – показано синим, полностью гасят друг друга и потому невидимы.

Полосы равной толщины возникают при отражении парал-лельного пучка лучей от поверхности тонкой пленки, толщина которой неодинакова и меняется по какому-либо закону. Оптическая разность хода интерферирующих лучей будет меняться при переходе от одних точек поверхности пленки к другим из-за изменения толщины пленки. Интенсивность света будет одинакова в тех точках, где одинакова толщина пленки, поэтому интерференционная картина называется полосами равной толщины. Полосы равной толщины локализованы вблизи поверхности пленки. Пусть на плоскопараллельную пластину толщиной h и с показателем преломления n падает рассеянный монохроматический свет с длиной волны λ. Из условия Δ = 2 nh cos β следует, что при n,h = const разность хода зависит только от угла падения лучей β. Очевидно, что лучи, падающие под одним углом, будут иметь одну и ту же разность хода. Если параллельно пластине разместить линзу L, в фокальной плоскости которой расположен экран Э, то эти лучи соберутся в одной точке экрана

В рассеянном свете имеются лучи самых разных направлений. Лучи, падающие на пластину под углом α1, соберутся на экране в точке Р1, интенсивность света в которой определяется разностью хода Δ. Таким образом, лучи, падающие на пластину во всевозможных плоскостях, но под углом α1, создают на экране совокупность одинаково освещенных точек, расположенных на окружности с центром в точке О. Аналогично, лучи, падающие под другим углом α2, создадут на экране совокупность одинаково освещенных точек, но расположенных на окружности другого радиуса. Следовательно, на экране будет наблюдаться система концентрических окружностей, называемых линиями равного наклона.

Классическим примером полос равной толщины являются кольца Ньютона. Ньютон наблюдал интерференционные полосы воздушной прослойке между плоской поверхностью стекла и плосковыпуклой линзой с большим радиусом кривизны, прижат стеклу. При нормальном падении света на линзу интерференционные полосы имеют форму концентрических колец, при наклонном - эллипсов. Они получаются вследствие интерференции лучей, отраженных от верхней и нижней границ воздушной прослойки между линзой и стеклянной пластиной

Интерференционые схемы

1)Метод деления амплитуды волны

2)Метод деления волнового фронта

Исходя из этого используют следующие интерф-е схемы

Способы получения интерференционных картин.

Метод Юнга. Свет от ярко освещено щели падает на две щели играющие роль когерентных источников.

Зеркала Френеля. Свет от источника падает расходящимся пучком на 2 плоских зеркала, расположенных под малым углом. Роль когерентных источников играют мнимые изображения источника. Экран защищен от прямого попадания лучей заслонкой.

Бипризма Френеля. Свет от источника преломляется в призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых когерентных источников.

Зеркало Ллойда. Точечный источник находится близко к поверхности плоского зеркала. Когерентными источниками служат сам источник и его мнимое изображение.

 

 

3)


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.048 с.