Оптические кабели, встроенные в грозозащитный трос — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Оптические кабели, встроенные в грозозащитный трос

2021-04-19 89
Оптические кабели, встроенные в грозозащитный трос 0.00 из 5.00 0 оценок
Заказать работу

Оптимальным решением для создания надёжной оптической связи по ВЛ является передача оптического сигнала по кабелям, встроенным в грозозащитный трос. При выборе конструкции таких кабелей следует учитывать то обстоятельство, что кабель должен выполнять две функции: с одной стороны, обеспечивать стабильность оптических параметров в течении длительного времени эксплуатации (не менее 25 лет); и с другой стороны, обеспечивать надёжную защиту линии от ударов грозовых разрядов, выдерживать значительные токи короткого замыкания, возникающие на линии в течении срока службы кабеля.

В связи с этим проектировщикам оптических кабелей, встроенных в грозозащитный трос, приходится решать задачи обеспечения заданных оптических параметров в условиях повышенных температур, возникающих в кабеле при его нагреве от токов короткого замыкания, при ударах грозовых разрядов, и в условиях пониженных температур, которые определяются климатическим районом подвески кабеля. Кроме того, необходимо обеспечить высокую механическую прочность кабеля и низкое сопротивление.

В настоящее время многие зарубежные фирмы, а также ряд российских компаний, освоили выпуск таких кабелей и предлагают различные конструктивные и технологические решения для обеспечения указанных параметров. По конструкции оптические кабели, встроенные в грозозащитный трос, можно разделить на три основные группы.

Первая группа кабелей. Оптический сердечник заключен в трубку из алюминия или алюминиевого сплава, которая бывает герметичной и негерметичной, обеспечивает механическую защиту оптического сердечника, имеет низкое электрическое сопротивление. Поверх трубки положены повивы из проволок, определяющие механическую прочность кабеля и его электрические параметры.

На рисунке 3.1 показаны типичные конструкции кабелей первой группы, выпускаемых следующими фирмами:Alcoa Fujikura LTD (США), BICC (Великобритания), Cables Pirelli S.A. (Испания), Alcatel (Франция), Showa’s Wires&Cables (Япония), Fujikura (Япония), АО ВНИИКП совместно с АОЗТ “Самарская оптическая кабельная компания” (Россия) [6].

Второй тип кабелей. Оптические волокна свободно уложены в герметичной трубке из нержавеющей стали, свободное пространство трубки заполнено гидрофобным заполнителем. Одна или несколько таких трубок с оптическими волокнами скручены вокруг центральной проволоки, образуя первый повив кабеля. В зависимости от прочности и необходимого сопротивления кабеля дополнительно накладываются еще один или два повива проволок.

Кабели такого типа выпускаются фирмами: AEG (Германия), Felten&Guilleaume Energietechnik (Германия), Philips (Германия). Типичный образец кабеля такого типа показан на рисунке 3.2 [6].

Третья группа кабелей. Оптические волокна свободно уложены в полимерной трубке, свободное пространство которой заполнено гидрофобом. Поверх полимерной трубки наложены повивы из проволок, обеспечивающие необходимую механическую прочность и электрическое сопротивление кабеля.

Конструкцию такого вида кабелей предлагают фирмы Nokia (Финляндия) и Siemens (Германия). На рисунке 3.3 представлены конструкции этих кабелей [6].

К третьей группе можно отнести ОКГТ, выпускаемый АОЗТ “Ссамарская оптическая кабельная компания” (рис. 3.4). Его конструктивная особенность заключается в том, что между внешним и внутренним повивами проволок расположена оболочка из алюминия.

Таким образом, основным принципиальным отличием оптических сердечников, выпускаемых различными фирмами для оптических кабелей, встроенных в грозозащитный трос, является укладка волокна в оптическом сердечнике. Применяется как свободная укладка волокон в оптическом модуле (loose tube), так и плотная упаковка волокон (tight unit или tight buffer).

При расчете оптического кабеля, встроенного в грозозащитный трос, на предельно допустимую растягивающую нагрузку следует учитывать предельно допустимую нагрузку на волокно для сохранения как оптического затухания, так и его целостности в течении всего срока службы кабеля. Так, для кабелей со свободной укладкой волокон в оптическом сердечнике обычно волокно не нагружено при максимально допустимой растягивающей нагрузке, приложенной к кабелю. Нагрузка на волокно (или удлинение волокна) появляется при приложении к кабелю нагрузок, превышающих максимально допустимые, как показано на рисунке 3.5 [6].

При использовании оптических сердечников с плотной упаковкой волокон приложенная растягивающая нагрузка на кабель передаётся на оптическое волокно, то есть оптическое волокно в этом случае находится в напряженном состоянии (рис. 3.5). Известно, что под действием нагрузки и влаги механическая прочность оптических волокон изменяется и вследствии этого уменьшается их время жизнеспособности. Таким образом, для обеспечения необходимого срока службы кабеля требуются защита оптических волокон от действия влаги и сохранение высокой механической прочности волокон в течении всего срока службы кабеля. Так, фирма Alcoa Fujikura, применяющая конструкцию кабеля с плотной упаковкой волокон в оптическом сердечнике, использует оптическое волокно фирмы Corning Incorporated Opto-Electronics Group, которое имеет дополнительное покрытие по кварцевой оболочке окисью титана. АОЗТ “Самарская оптическая кабельная компания“ в своей кабельной продукции использует оптические волокна этой же фирмы и имеет возможность изготовления ОКГТ с одномодовыми оптическими волокнами повышенной стойкости к старению SMF-33Titan.

Такое волокно имеет параметр усталости n =29.5 (для обычного волокна n=22.5), отражающий время жизнеспособности волокна. Предварительная отбраковка волокна при 1%-ном удлинении позволит гарантировать срок его службы в течении 40 лет. Максимально допустимые нагрузки на кабель выбираются из расчёта удлинения волокна до 0,5-0,6%.

При плотной упаковке волокна в оптическом сердечнике его размеры могут быть значительно снижены по сравнению с размером сердечника со свободной укладкой волокна, что имеет значение для оптических кабелей с большим числом волокон, так как при этом диаметр кабелей может быть уменьшен.

Компактную конструкцию имеют кабели, в которых оптическое волокно уложено в трубку из нержавеющей стали, что позволяет оптимизировать габаритные размеры кабеля (массу, диаметр) при сохранении его высокой механической прочности и необходимого электрического сопротивления. Однако в этом случае не исключена возможность электрохимической коррозии. Поэтому скрутка трубок с волокном и стальных проволок, покрытых алюминием, обычно имеет смазку для уменьшения коррозии, например у кабелей фирмы, Felten&Guilleaume.Фирма Philips предложила обмотку трубки алюминиевой лентой, внутренняя сторона которой покрыта полимерной пленкой.

В конструкции кабелей без защиты оптических сердечников от воздействия влаги требуется применение полимерных материалов, сохраняющих свои физико-механические свойства под действием растягивающих нагрузок и атмосферы в течении длительного времени эксплуатации.

Для обеспечения электрических параметров конструкция кабеля рассчитывается на определенное сопротивление постоянному току, которое достигается необходимым сечением алюминия и его сплавов. Применение трубок из алюминия и проволок алюминиевого сплава в повиве со стальными оцинкованными проволоками ограничивает срок службы кабеля из-за вероятности электрохимической коррозии. Для обеспечения длительного срока эксплуатации необходимо применение специальных антикоррозийных смазок или антикоррозийных покрытий стальных проволок. Покрытие стальной проволоки цинкоалюминиевым сплавом позволяет значительно увеличить её срок службы. Наилучшим решением является покрытие стальных проволок алюминием. В этом случае обеспечивается высокая защита стальной проволоки и проволок из алюминия или алюминиевого сплава от коррозии и увеличивается электрическое сопротивление кабеля. Для обеспечения высокой механической прочности кабеля и модуля упругости в проволоке, покрытой алюминием, необходимо использование стали с прочностью не менее 160 кгс/мм 2; обычно прочность стальной проволоки, покрытой алюминием, составляет не менее 140 кгс/мм 2, в отдельных случаях она может быть выше.

Из всего сказанного следует, что при выборе конструкции оптического кабеля, встроенного в грозозащитный трос, необходимо учитывать оптимизацию всех его параметров: максимально допустимую растягивающую нагрузку, сопротивление постоянному току, массу, диаметр, число волокон, а также показатели надежности его элементов.

Самонесущие неметаллические оптические кабели

 

Создание оптической связи по высоковольтным линиям электропередачи без замены грозозащитных тросов на оптические кабели, встроенные в грозозащитный трос, возможно с помощью подвески специально разработанных для этой цели подвесных неметаллических оптических кабелей связи. К настоящему времени многие российские, и зарубежные фирмы предлагают различные по конструктивному решению кабели такого класса. Основные типовые конструкции этих кабелей можно разделить на три группы.

Первая группа кабелей-подвесные неметаллические оптические кабели связи, силовыми элементами которых являются стеклопластиковые стержни. Кабели этой группы в основном выпускаются российскими предприятиями. Обусловлено это тем, что цена 1 км стеклопластикового стержня в России в 2-3 раза дешевле, чем за рубежом. Основными поставщиками таких кабелей являются АО ВНИИКП (Москва) и ОПТЕН (Санкт-Петербург). Этими предприятиями разработана номенклатура кабелей, рассчитанных на различные механические нагрузки; на рисунке 3.6 [6] показаны типовые конструкции кабелей данной группы. В обоих случаях волокно свободно уложено в оптическом модуле, свободное пространство которых заполнено гидрофобным заполнителем (loose tube). Основное отличие заключается в технологическом исполнении оптического сердечника. В кабелях АО ВНИИКП оптические модули скручены вместе со стеклопластиковыми элементами вокруг центрального стеклопластика, для обеспечения необходимой растягивающей нагрузки поверх оптического сердечника накладываются повивы из стеклопластиков. В кабелях АО ОПТЕН оптический сердечник выполнен в виде скрутки оптических модулей между собой, поверх оптического сердечника положен повив из стеклопластиковых стержней.

Вторая группа кабелей-подвесные неметаллические оптические кабели, силовыми элементами которых являются арамидные нити. Кабели данной группы выпускаются как многими зарубежными фирмами, такими как Alcoa Fujikura (США), Siemens (Германия), АТ&T (США), Pirelli (Италия), так и российскими предприятиями АО ВНИИКП и АО ОПТЕН. Типовая конструкция таких кабелей представлена на рисунке 3.7, а [6]. Все перечисленные фирмы используют оптические модули со свободной укладкой волокна (loose tube).

Третья группа кабелей - подвесные неметаллические оптические кабели, силовыми элементами которых являются арамидные нити и стеклопластик, который в свою очередь, может быть стержнем, а может быть выполнен в виде центрального профилированного элемента. Такой вариант кабеля изображен на рисунке 3.7, б [6]. Оптический кабель с силовыми элементами из арамидных нитей стеклопластиковых стержней предлагается АО ВНИИКП и показан на рисунке 3.7, в [6].

Расчет подвесных оптических кабелей на максимально допустимую растягивающую нагрузку проводят на основе допустимой нагрузки на волокно (максимально допустимого удлинения волокна), которая выбирается каждым разработчиком кабеля, исходя из избыточной длины волокна в оптическом модуле и в некоторых случаях при использовании специально подобранных волокон дополнительно допустимой нагрузки на волокно. Так, фирма АТ&Т предлагает конструкцию кабеля, в котором волокно не удлиняется при удлинении кабеля до 1%. АО ВНИИКП допускает растягивающую нагрузку на кабель при его удлинении до 0,5% без удлинения волокна. При этом число арамидных нитей или сечение стеклопластиковых элементов выбирается из расчета допустимой нагрузки при заданном удлинении кабеля.

Недостатками оптических кабелей 1-ой группы по сравнению с кабелями 2-ой группы являются их больший наружный диаметр из-за низкой степени заполнения стеклопластиковых элементов, меньшая гибкость, большая масса.

Защита оптического сердечника кабеля и армирующих элементов от влаги обеспечивается полимерными оболочками кабеля. Поэтому особенно актуальной является задача сохранения целостности наружной полиэтиленовой оболочки в течении всего срока службы кабеля. Известно, что под воздействием электрического поля и влаги происходит деградация полиэтиленовой оболочки кабеля [6], поэтому при условии выбора точки подвеса с минимальной напряженностью электрического поля подвесные неметаллические оптические кабели с оболочкой из обычного шлангового полиэтилена (в российском варианте ПЭ 153-10К) рекомендованы для подвески на линиях электропередачи напряжением до 110 кВ (для зарубежных линий 132кВ).

Таким образом, подвесные неметаллические оптические кабели имеют ограниченную область применения. В последнее время проведены работы по созданию материала для оболочки таких кабелей на основе полиэтилена, который имеет повышенную трекингостойкость (трекинг-образование на поверхности диэлектрика следов пробоя при воздействии электрического поля). Так фирмы Alcoa Fujikura и Siemens предлагают оптический кабель для подвески на линиях электропередачи напряжением 230 кВ при выборе точки подвеса с напряженностью не более 12 кВ. Фирма АТ&Т предлагает оптические кабели для подвески на линиях электропередачи напряжением 230 и 500 кВ с ограничением точек подвеса по напряжению не более 12 и 25 кВ соответственно. Следовательно, в настоящее время область применения подвесных неметаллических кабелей расширяется. Но при этом требуется проведение тщательных расчетов возможных воздействий на оболочку кабеля, а, возможно, и его дополнительных испытаний. Работы, проведённые в АО ВНИИКП по влиянию электрического поля на полиэтиленовую оболочку кабеля, показали, что наблюдается изменение надмолекулярной структуры полиэтилена при 1,75 кВ/cм. Вероятной причиной этих изменений может быть разогрев образца в ходе электрических испытаний до температуры примерно 60°С, вследствии чего вероятно ускоренное старение полиэтилена.


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.