в которой говорится о нашем стремлении к знанию и о том, почему это важно — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

в которой говорится о нашем стремлении к знанию и о том, почему это важно

2021-01-31 68
в которой говорится о нашем стремлении к знанию и о том, почему это важно 0.00 из 5.00 0 оценок
Заказать работу

 

Наука как человеческое предприятие – это одно из величайших достижений нашего интеллекта и истинное свидетельство нашей способности совместно создавать знания. Наука – это ответ на наше страстное желание понять мир, в котором мы живем, и свое место в нем. Она задается древнейшими вопросами, которые преследовали и подталкивали людей вперед в течение многих веков, – вопросами начала и конца, места и смысла. Нам нужно знать, кто мы такие, где мы находимся и как мы сюда попали. Наука откликается на нашу человеческую природу, на наше непрестанное стремление к свету.

Разум – это инструмент, который мы используем в науке, но он не является ее мотивацией. Мы не пытаемся познать мир сам по себе и закончить на этом. Наш поиск определяет нас, он воплощается во всем, что делает нас людьми: в страстях и драмах, в вызовах и задачах, в победах и поражениях, в вечном желании идти вперед, в пугающем, но одновременно манящем ощущении, что мы знаем так мало и что впереди нас ждут тайны – скрытые от нашего глаза, близкие, но одновременно недоступные.

Мы анализируем и тестируем Природу так, как можем, с помощью своих инструментов и интуиции, моделей и приближений, фантастических описаний, метафор и образов. Наука, как я показываю ее в этой книге, – это бесконечное движение, конца которому не предвидится. Чем больше мы узнаем о мире, чем больше сравниваем данные наблюдений с нашими теориями, чем глубже и дальше заходим в своих поисках, тем чаще понимаем, что получаемые нами ответы не всегда ведут нас вперед. Иногда они означают шаг назад. Остров знаний может увеличиваться и уменьшаться по мере того, как мы узнаем что‑то новое о Вселенной или отказываемся от прошлых взглядов. Мы видим мир яснее, чем кто‑либо до нас, но все еще недостаточно ясно.

Надежда на то, что когда‑нибудь мы достигнем конечной полноты знаний, слишком наивна. Для того чтобы двигаться вперед, наука должна совершать ошибки. Мы можем стремиться к достоверности, но для дальнейшего роста нам необходимы сомнения. Мы окружены горизонтами и проявлениями неполноты. Все, что мы видим, – это тени на стене пещеры. С другой стороны, наивно и полагать, что эти препятствия непреодолимы. Границы – это стимулирующий фактор. Они рассказывают нам о мире, о нашем восприятии его и о нас самих, при этом подталкивая вперед в поиске ответов. Мы раздвигаем границы, чтобы лучше понять, кто мы такие. Тот же процесс, который мы видим в науке (движение вперед или отступление, но при этом постоянный прогресс), должен происходить с каждым из нас при достижении наших личных целей. Когда мы боимся сделать следующий шаг в неизвестное, мы перестаем расти.

Наука – это не просто знания о физической реальности. Это взгляд на жизнь, это образ жизни, коллективное стремление расти как вид в мире, полном тайн, страхов и чудес. Наука – это одеяло, которым мы накрываемся каждую ночь, свет, который мы включаем во тьме, маяк, напоминающий нам, на что мы способны, когда работаем сообща в стремлении к единой цели. Тот факт, что науку можно использовать во благо или во вред, говорит лишь о ненадежности человеческого рода и о его склонности к созданию и уничтожению.

Исследуя Природу и изучая множество ее лиц, мы должны помнить, что берега неведения растут вместе с Островом знаний. Океан неизвестного растет вместе с нашими успехами. Кроме того, нельзя забывать, что науке отведена лишь часть этого Острова, ведь существует множество способов знать, которые подпитывают друг друга. Пусть физические и социальные науки освещают многие аспекты знания, но им не принадлежат все ответы. Как глупо было бы попытаться вместить все, на что способен человеческий дух, в одном понятии «знание»! Мы многомерные существа, ищущие ответы различными дополняющими друг друга способами. У каждого из них есть своя собственная цель, но нам нужны они все. Когда вы подаете бокал вина любимому человеку, появляется что‑то еще, кроме химии его молекулярного строения, физики его жидкого состояния и света, отражающегося на его поверхности, или биологии его ферментации и нашей сенсорной реакции на него. Ко всему этому добавляется ощущение вкуса вина и его красного цвета, чувство присутствия любимого человека, блеск в его глазах, эмоции от того, что вы разделяете этот чудесный момент друг с другом. Пусть многие из этих реакций имеют когнитивное и неврологическое основание, было бы неправильно сводить их все к набору измеримых данных. Все они важны, и все они в сумме дают нам представление о том, что значит быть живыми и искать ответов, дружбы, понимания или любви.

Не на все вопросы есть ответы. Надеяться на то, что их однажды сможет найти наука, – значит хотеть ограничить человеческий дух, подрезать его крылья, отобрать у нашего существования многомерность. Учитывая все, что сказано в данной книге о границах научного знания, можно понять, что эта надежда ошибочна. Одно дело – искать ответы на вопросы о начале и конце, смысле и цели в рамках научного знания. Этим мы должны заниматься постоянно. Я как ученый посвятил этому свою жизнь. И совсем другое дело – верить, что этот поиск конечен, что у океана неизвестного есть берега и что только наука может их достигнуть. Как самоуверенно заявлять, что мы можем знать все, что мы способны раскрывать законы Природы один за другим, как матрешки, пока не доберемся до последнего! Принять неполноту знания не означает признать поражение человеческого интеллекта. Это не значит, что мы выбрасываем белый флаг. Это значит, что мы выделяем науке место в человеческом мире, признаем ее несовершенной и вместе с тем могущественной, неполной, но при этом – нашим лучшим инструментом для описания мира. Наука – это не отражение божественной истины, состоящее из открытий, которые мы сумели добыть из идеального измерения Платона, но проявление чисто человеческого беспокойства, стремления к порядку и контролю, трепета и ужаса перед бесконечностью космоса.

Мы не знаем, что лежит за нашим горизонтом, – что думать о раннем состоянии Вселенной или как получить детерминистское описание квантового мира. Эти неизвестные обстоятельства не просто отражают наше текущее неведение или несовершенство наших инструментов. Они выражают саму суть Природы, ее ограниченность скоростью света, линейностью времени, неизменной случайностью. Между выражениями «мы не знаем» и «мы не можем знать» существует принципиальная разница. Даже если мы найдем ответы на какие‑то из этих вопросов, они будут ограниченны. Мы не сможем продвинуться за свой космический горизонт, пока не научимся двигаться быстрее скорости света. Любой научный ответ на вопрос о ранней Вселенной будет в значительной степени зависеть от концепций, которые мы используем в рамках науки, – понятий полей, законов сохранения, неопределенностей, природы пространства, времени и гравитации. Квантовая нелокальность сводит на нет все наши попытки детерминистского описания микромира. Если говорить в общем, то любое научное объяснение обязательно окажется ограниченным.

Я понимаю, почему некоторым сложно понять, что подобные ограничения не умаляют красоты и силы науки. Мне кажется, что сопротивление этим идеям возникает из древнего способа мышления, в котором наука представлялась людям как противник всего тайного и загадочного. Из‑за такой точки зрения люди путают недостижимую цель по приобретению абсолютного знания с бесконечным стремлением к поиску. Лично я считаю наоборот. То, какой наука является на самом деле, делает ее еще более прекрасной и сильной. Так она оказывается наравне с другими творческими достижениями человечества – все еще впечатляющими, несмотря на наше несовершенство и многомерность.

Оглядевшись вокруг, мы видим лишь малую часть того, что нас окружает. Вспомните, что материя, из которой мы сделаны, составляет лишь 5 % всего космоса, что он наполнен темной материей и темной энергией. Прямо сейчас темная материя находится рядом с каждым из нас. Даже если наши приборы продолжат улучшаться (а так и будет), даже если мы наконец раскроем тайну темной материи и темной энергии (я уверен, что будет и это), информация, которую мы сумеем получить, все равно будет иметь свои границы. Новое поджидает нас в самых неожиданных местах и готовится снова радикально изменить наши представления о мире.

То, что мы называем реальностью, на самом деле представляет собой постоянно движущуюся мозаику идей.

Читатель, я прошу тебя снова обратить внимание на то, что моя точка зрения не означает поражение и отказ от дальнейшего научного поиска. Совсем наоборот – поиск должен продолжаться. Именно этот поиск и придает смысл нашему существованию. Мы ищем ответы, зная, что самые важные из них вызовут еще больше вопросов. Если рассматривать науку в исторической перспективе, как я сделал в этой книге, достаточно просто не только смириться с неполнотой знаний, но принять ее как символ того, что значит быть человеком. Огромное желание чуда – вот то, что питает нашу поразительную способность узнавать новое.

Как и наши предки, мы склоняемся перед масштабностью данного предприятия, перед красотой неведомого, которое так манит нас. Это восхищение, смешанное со страхом, движет нас вперед с самого начала нашего существования. Оно связывает прошлое и настоящее и направляет нас в будущее по мере того, как мы продолжаем свои поиски. Давайте не будем сводить этот спор к банальному «мы способны все знать» против «мы не способны все знать». Давайте примем этот трепет в наших сердцах и умах, этот импульс, толкающий нас к знаниям и открытиям, это желание пролить еще немного света на тьму перед нами и раздвинуть границы Острова знаний – вперед, в стороны, назад – неважно, лишь бы они двигались в сторону лучшего понимания. Давайте восстанем против гаснущего света и не согласимся покорно уйти во тьму. Все, что важно, – продолжать светить. Вот для чего мы здесь.[206]

 

 

Благодарности

 

Идея этой книги пришла ко мне во время конференции «Законы природы: их характер и познаваемость», которая прошла в мае 2010 года в канадском институте теоретической физики «Периметр». Организаторы конференции Стив Вейнстейн, Дэвид Уолперт и Крис Фукс были так добры, что пригласили меня и позволили самому выбрать тему своего выступления. Я бесконечно благодарен им за помощь в развитии моих идей о границах науки и природе знания.

Когда я задумался, что я могу сказать перед группой выдающихся ученых и философов, присутствовавших на конференции, у меня в голове возник образ Острова знаний. Мы окружены океаном непознанного, и по мере того, как Остров растет, разрастаются и берега нашего неведения, а значит, и наша способность задавать вопросы, о которых мы раньше даже подумать не могли. Образ Острова натолкнул меня еще на один образ – существование непознаваемого, то есть вопросов, ответы на которые недоступны человеческой мысли. Положительная реакция моих коллег и множество дискуссий, последовавших за моим выступлением, еще больше разожгли мое воображение. В результате, после четырех лет работы, родилась эта книга.

Я хотел бы поблагодарить своих коллег, которые тратили свое время и силы, чтобы ответить на мои вопросы и о природе знания. В первую очередь, я хочу выразить сердечную благодарность Адаму Фрэнку, Дэвиду Кайзеру и Николь Юнгер‑Хальперн, которые прочли черновой вариант этой книги и предоставили мне свои бесценные комментарии и критические отзывы. Все мы знаем, как велика цена времени на сегодняшний день, когда каждую секунду вокруг появляются новые заманчивые идеи.

Я также хочу сказать спасибо моему агенту Майклу Карлайлу за то, что он с самого начала верил в этот проект, и моему редактору в Basic Books Т. Дж. Келлехеру – за то, что этот проект стал реальностью.

Наконец, я благодарю своих детей Эндрю, Эрика, Тали, Луциана и Габриэль, которые научили меня обращать внимание на действительно важные аспекты жизни и каждый день смотреть на мир с удивлением и восхищением. Спасибо и моей жене Кари за ее любовь, поддержку и понимание.

 


[1] Определение «минимальные частицы вещества, из которых состоит все сущее в мире» требует подробного объяснения, которое я приведу в части II. Мы должны задаться вопросом, могут ли ученые в принципе быть уверены, что они обнаружили «минимальную частицу вещества». Как вы увидите далее, этот вопрос напрямую связан с ограниченностью человеческого знания.

 

[2] Здесь следует провести аналогию с крупицей соли, так как апельсины, сталкивающиеся на обычных скоростях, сильно отличаются от частиц вещества, сталкивающихся на скорости, близкой к скорости света. Новые виды частиц возникают, когда энергия движения конвертируется в массу. Если разогнать апельсин до скорости света, то после столкновения нам останутся только капли сока, ошметки мякоти и лопнувшие косточки. Физики любят говорить, что сталкивать частицы для создания новых – все равно что сталкивать два теннисных мяча, чтобы получить в итоге целый «Боинг‑747».

 

[3] «Элементарный» в данном случае означает «неделимый», то есть «не состоящий из более мелких частей» (см. примечание 1). Эта цитата указывает на то, что, когда частицу называют элементарной, мы должны с осторожностью относиться к такому определению. Точнее было бы сказать, что, учитывая наше понимание свойств материи на данный момент, та или иная частица может считаться элементарной или не имеющей структуры. Ключевым в этом определении является выражение «на данный момент».

 

[4] Разумеется, наука представляет собой лишь один из способов «узнать больше, чем мы можем увидеть». Искусство дополняет ее, пытаясь излечить человека от эмоциональной слепоты и установить связь между зыбкой областью чувств и более материальным миром слов, образов и звуков.

 

[5] Bernard le Bovier De Fontenelle, Conversations on the Plurality of Worlds (Berkeley: University of California Press, 1990), 1.

 

[6] Когда я в последний раз проверял библиографические ссылки в этой книге перед отправкой рукописи редакторам, я наткнулся на образ, очень похожий на мою собственную метафору Острова знаний. Знаменитый австрийский физик Виктор Вайсскопф писал: «Наши знания – это остров в бесконечном океане непознанного, и чем больше он становится, тем длиннее оказывается граница между известным и неведомым». Victor Weisskopf, Knowledge and Wonder: The Natural World as Man Knows It (Garden City, NY: Doubleday, 1962). Цит. по: Louise B. Young, ed., The Mystery of Matter (New York: Oxford University Press, 1965), 95. Но Вайсскопф, в отличие от меня, не развивает эту идею дальше. Научный журналист Джон Хорган в своей противоречивой книге The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age (New‑York: Broadway Books, 1996) приписывает подобное высказывание американскому физику Джону Арчибальду Уилеру: «По мере того как разрастается остров нашего знания, увеличиваются и берега неведомого». О существовании еще одного схожего образа я узнал в середине работы над этой книгой. Сэр Уильям Сесил Дампьер в своей работе A History of Science and Its Relations with Philosophy and Religion, 4th ed. (Cambridge: Cambridge University Press, 1961) писал: «Научное познание безгранично, потому что, как верно говорят, чем больше становится сфера знаний, тем больше и площадь неведомого, с которым она вступает в контакт». Я хочу сказать спасибо Mark I – читателю моего блога, который обратил мое внимание на эту цитату, даже не зная о проекте книги. Образ острова или сферы знаний, очевидно, является очень убедительным. Судя по всему, впервые эта метафора появляется в «Рождении трагедии» немецкого философа Фридриха Ницше: «Окружность науки имеет бесконечно много точек, и в то время, когда совершенно еще нельзя предвидеть, каким путем когда‑либо ее круг мог бы быть окончательно измерен, благородный и одаренный человек еще до середины своего существования неизбежно наталкивается на такие пограничные точки окружности и с них вперяет взор в неуяснимое» (Basic Writings of Nietzsche, trans. Walter Kaufmann [New York: Modern Library, 2000], 97).

 

[7] Позднее я подробнее объясню разницу между подобным недосягаемым неизвестным и тем, что я называю научным неизвестным. Последнее является важнейшей частью нашего понимания Природы.

 

[8] Mircea Eliade, Images and Symbols: Studies in Religious Symbolism (New York: Sheed & Ward, 1961), 59.

 

[9] Стремясь к профессиональной целостности, ученому следует отказаться от своей веры, если она не подтверждается доказательствами. Но отпускать то, к чему ты привык, бывает тяжело.

 

[10] Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy, trans. I. Bernard Cohen, Anne Whitman (Berkeley: University of California Press, 1999), 796. В «третьем правиле изучения натуральной философии» Ньютон предполагает, что «свойства тел, [которые не могут быть увеличены или уменьшены] и которые имеются у всех тел, на которых проводятся эксперименты, должны приниматься за универсальные свойства всех тел».

 

[11] Аэций цитируется по Daniel W. Graham, ed., Texts of Early Greek Philosophy: The Complete Fragments and Selected Testimonies of the Major Presocratic (Cambridge: Cambridge University Press, 2010), Part 1, 29.

 

[12] Graham, Texts of Early Greek Philosophy, Part 1, 35.

 

[13] Isaiah Berlin, “Logical Translation”, in Concepts and Categories: Philosophical Essays, ed. Henry Hardy (New York: Viking, 1979), 76.

 

[14] Graham, Texts of Early Greek Philosophy, Part 1, 55.

 

[15] См., например, биографию Анаксимандра авторства Карло Ровелли (Carlo Rovelli, The First Scientist: Anaximander and His Legacy (Yardley, PA: Westholme, 2011).).

 

[16] Graham, Texts of Early Greek Philosophy, Part 1, 47.

 

[17] Graham, Texts of Early Greek Philosophy, Part 1, 57.

 

[18] Подобным правом обладали мужчины. Исключение составляют пифагорейцы, которые единственные наделяли женщин равным статусом.

 

[19] После прочтения этих строк становится ясно, почему Стивен Гринблатт в своей блестящей книге The Swerve: How the World Became Modern пишет о ключевой роли Лукреция и его поэмы в формировании современного мира.

 

[20] G. S. Kirk, J. E. Raven, and M. Schofield, The Presocratic Philosophers: A Critical History with a Selection of Texts, 2nd ed. (Cambridge: Cambridge University Press, 1983), 343.

 

[21] Nicolaus Copernicus, On the Revolutions of the Heavenly Spheres, trans. Edward Rosen (Baltimore: Johns Hopkins University Press, 1992), 4–5.

 

[22] Plato, The Dialogues: The Republic, Book VII, trans. Benjamin Jowett, Great Books of the Western World, vol. 7, ed. Mortimer J. Adler, 2nd ed. (Chicago: Encyclopaedia Britannica, 1993), 389, line 517.

 

[23] Lucretius, The Nature of Things, Book II, trans. A. E. Stallings (1060; rept., London: Penguin, 2003), 67–68.

 

[24] Тот факт, что каждая гипотеза рано или поздно должна быть опровергнута, определяется самой эволюцией науки и постоянным пересмотром того, как она моделирует и описывает науку. Представление об электроне, которого придерживались ученые XIX века, отличается от существовавшего в 1940‑е годы и от принятого сейчас. Далее в этой книге мы увидим, как менялись другие ключевые представления.

 

[25] Представление о Боге как о Космическом часовщике было популярно среди деистов XVIII века, к которым причислял себя и Бенджамин Франклин.

 

[26] Simplicius of Cilicia, On Aristotle’s “On the Heavens 2.1–9”, trans. Ian Mueller (Ithaca, NY: Cornell University Press, 2004), 74 (line 422,20).

 

[27] Moses Maimonides (1135−1204), “The Reality of Epicycles and Eccentrics Denied”, trans. Shlomo Pines, in A Source Book in Medieval Science, ed. Edward Grant (Cambridge, MA: Harvard University Press, 1974), 517–520.

 

[28] Graham, Texts of Early Greek Philosophy, 83.

 

[29] Тот факт, что мы до сих пор используем слово «метеорология» для описания науки о погоде, указывает на то, какое огромное влияние идеи Аристотеля оказали на западную культуру. Ведь облака и грозы имеют мало общего с метеорами!

 

[30] Martin Luther, Table Talk, Luther’s Works, vol. 54, trans. and ed. Theodor G. Tappert (Philadelphia: Fortress, 1967), 358–359.

 

[31] J. L. E. Dreyer, Tycho Brahe (Edinburgh, 1890), 86f.

 

[32] Вид движения, называемый собственным движением, был впервые отмечен Эдмундом Галлеем в 1781 году при наблюдении за кометой, названной его именем. Кроме того, звезды могут приближаться и удаляться от нас при радиальном движении, которое обнаруживается с помощью эффекта Допплера – небольшого изменения длины световых волн (расстояния между двумя пиковыми значениями) при приближении (уменьшении) или удалении (увеличении) источника света.

 

[33] Обратите внимание, что с точки зрения земного наблюдателя Солнце движется по небу, совершая один полный оборот в год. По мере движения оно проходит через 12 зодиакальных созвездий, тех самых, которые включаются в гороскопы. Поскольку угол наклона Земли при вращении составляет 23,5 градуса, путь Солнца по небу имеет такой же наклон над и под звездным экватором. Отсюда взялось выражение «прямое восхождение». Во время весеннего и осеннего солнцестояния траектория движения Солнца пересекает звездный экватор и два этих воображаемых круга соединяются с нулевым прямым восхождением.

 

[34] В отношении углов используется та же шестидесятеричная система, что и в отношении часов, минут и секунд. Как час делится на 60 минут, так и угол 1 градус может быть разделен на 60 угловых минут (1 угловая минута составляет 1/60 градуса соответственно). Угол размером 1 угловая минута состоит из 60 угловых секунд (1 угловая секунда равна 1/3600 градуса).

 

[35] Существует простое упражнение, позволяющее понять, как работает параллакс. Вытяните вперед руку и закройте левый глаз. Посмотрите на свой большой палец, а затем на предмет, находящийся еще дальше, например на картину на стене. Обратите внимание, как они расположены относительно друг друга. Теперь зажмурьте правый глаз и еще раз посмотрите на палец и картину. Вам покажется, что положение пальца поменялось, а картина осталась на месте. В случае Браге роль глаз играли два астронома из Дании и Праги, вместо пальца была Луна, а вместо картины – комета.

 

[36] Я много писал о жизни Кеплера в других своих книгах, поэтому в этой мы отвлечемся от превратностей его судьбы и сконцентрируемся на науке.

 

[37] Чтобы показать вам вещи в правильной перспективе, я должен отметить, что в данном случае «резкий» – это некоторое преувеличение. Чтобы визуализировать, как орбита Марса отклоняется от идеально круглой формы, представьте, что вы нарисовали окружность на 50‑футовой доске. Орбита Марса будет на один дюйм выходить за ее пределы.

 

[38] Рисунки Луны, созданные Хэрриотом, можно найти в Интернете по адресу http://galileo.rice.edu/sci/harriot_moon.html в разделе Thomas Harriot’s Moon Drawings, The Galileo Project, 1995. Его биографию см. в книге John W. Shirley, Thomas Harriot: A Biography (Oxford: Clarendon, 1983).

 

[39] Галилею должно было быть известно, что модель Браге также была рабочей и могла предсказывать фазы Луны. Однако он проигнорировал этот факт, к сожалению, равно как и эллиптические орбиты Кеплера.

 

[40] Из манускрипта Кеплера о сверхновых De Stella Nova 1604 г. Цит. по: Alexandre Koyre, From the Closed World to the Infinite Universe (Baltimore: Johns Hopkins University Press, 1957), 61.

 

[41] Несмотря на существование споров относительно того, действительно ли Галилей делал что‑то подобное, у входа в башню висит мемориальная табличка, посвященная его эксперименту. Кроме того, ученик и первый биограф Галилея Вивиани заявлял, что подобный опыт имел место. Как бы там ни было, я провел точно такой же эксперимент на знаменитой башне для бразильской телепередачи об истории науки. Воспроизводимость – главное в нашем деле.

 

[42] Вот ссылка на это видео в YouTube: http://www.youtube.com/watch?v=KDp1tiUsZw8. Представьте, как бы поразился Галилей, если бы узнал, что его опыт был повторен на поверхности Луны менее чем через 400 лет после него.

 

[43] Jonathan Hughes, The Rise of Alchemy in Fourteenth‑Century England: Plantagenet Kings and the Search for the Philosopher’s Stone (London: Continuum, 2012), 24.

 

[44] Newton, Mathematical Principles, 941.

 

[45] Blaise Pascal, Pensées, trans. A. J. Krailsheimer (New York: Penguin, 1995), nos. 205 and 206.

 

[46] Isaac Newton, Four Letters to Richard Bentley, in Newton: Texts, Backgrounds, Commentaries, ed. I. Bernard Cohen and Richard S. Westfall (New York: Norton, 1995), 330–339.

 

[47] Newton, Mathematical Principles, 943.

 

[48] Обратите внимание, что мое заявление не имеет ничего общего с традиционными философскими течениями, такими как релятивизм или постмодернизм, или с любыми заявлениями о том, что наука по сути своей субъективна, или с теми, которые утверждают, что она представляет собой единственный путь к истине. Даже несмотря на то что научные концепции часто возникают из субъективных рассуждений людей или групп людей в рамках определенного культурного контекста, ученые в своей практической деятельности стремятся к универсальным истинам, то есть к результатам, которые любой желающий, обладая необходимой технической базой, может проверить и воспроизвести. Важно понимать, что научное описание реальности представляет собой непрерывный процесс создания картины мира и исправления ошибок в ней, направленный на достижение максимальной эффективности. Мое отношение к философии науки можно назвать натуралистическим конструктивизмом. Более подробно мы поговорим об этом позже.

 

[49] Обратите внимание, что свет движется с разной скоростью в разных средах, например в вакууме, воздухе и воде. Чем плотнее среда, тем ниже будет скорость света. Например, скорость света внутри алмаза составляет лишь 41 % от его скорости в вакууме.

 

[50] Как говорил Эйнштейн, «если рассматривать [метрическую] структуру в большем масштабе, мы можем представлять материю равномерно распределенной по огромному пространству так, что плотность ее распределения окажется переменной функцией, изменяющейся очень медленно». Albert Einstein, Cosmological Considerations on the General Theory of Relativity [1917], in The Principle of Relativity: A Collection of Original Papers on the Special and the General Theories of Relativity, trans. W. Perrett, G. B. Jeffery (New York: Dover, 1952).

 

[51] Стодюймовый телескоп Хукера в период с 1917 по 1948 год считался самым большим в мире. Он был назван в честь Джона Д. Хукера, бизнесмена из Лос‑Анджелеса, который финансировал постройку огромного рефлектора для телескопа.

 

[52] Без паровых локомотивов и высоких скоростей, которые они могли развивать, продемонстрировать идею Допплера было бы куда труднее. Контекст открытия во многом зависит от доступных инструментов.

 

[53] Robert Schulmann, A. J. Kox, Michel Janssen, and Jozsef Illy, eds., The Collected Papers of Albert Einstein, vol. 8, The Berlin Years: Correspondence, 1914−1918 (Princeton, NJ: Princeton University Press, 1998), Document 321.

 

[54] В своей книге «Танцующая Вселенная» я подробно описываю историю космологии в ХХ веке. Здесь я обращаю больше внимания на идеи, которые понадобятся нам для понимания дальнейших концепций.

 

[55] Удивительно, но это произойдет примерно тогда же, когда Солнце превратится в красного гиганта, поглотит Меркурий и Венеру и приблизится к орбите Земли. Пускай галактические столкновения на самом деле являются менее драматичными, чем кажутся нам (звезды находятся на огромных расстояниях друг от друга, и шансы на то, что одна из них врежется в другую, весьма невелики), конец Солнца будет означать и конец Земли как планеты, на которой обитает жизнь.

 

[56] Учитывая, что свет движется со скоростью 983 571 056 футов в секунду, для того чтобы преодолеть расстояние 1 фут, ему потребуется 1/983 371 056 секунды, или 1,0167 × 10–9 секунды. В вакууме свет преодолевает 1 фут за одну миллиардную долю секунды. Это соотношение легко запомнить (воздух отличается от вакуума, но разница невелика).

 

[57] Ученые, занимающиеся когнитивной нейробиологией, особо интересуются тем, как мозг принимает сигналы от различных органов чувств и, например, почему визуальные и аудиальные сигналы воспринимаются одновременно, хотя и идут до органов чувств разное время (например, мы слышим звук, с которым мячик для пинг‑понга ударяется о стол, и видим, как мячик подпрыгивает). В отчете Дж. В. Стоуна и его коллег говорится, что эта одновременность нарушается для разных людей в разное время, то есть вы и я по‑разному воспринимаем визуально‑аудиальную одновременность. Однако существует общее представление о том, что свет обходит звук на 52 миллисекунды (J. V. Stone et al., “When Is Now? Perception of Simultaneity”, Proceedings of the Royal Society of London [B] 268 [2001]: 31–38). Кроме того, судя по всему, мы можем реагировать на визуальные стимулы еще до того, как осознаем их присутствие. Иными словами, если визуальный стимул не слишком сложен, нашими действиями не всегда управляет сознание. См., например, J. Jolij, H. S. Scholte, S. Van Gaal, T. L. Hodgson, and V. A. Lamme, “Act Quickly, Decide Later: Long‑Latency Visual Processing Underlies Perceptual Decisions but Not Reflexive Behavior”, Journal of Cognitive Neuroscience 23, no. 12 (2011): 3734–3745. Нужно также отметить, что наше текущее понимание сознания еще не настолько точно, чтобы мы могли его отслеживать.

 

[58] Говоря точнее, под «светом» в данном случае я понимаю не только видимый свет, но и все возможные типы электромагнитного излучения, из которых видимый свет составляет лишь небольшую долю. Электромагнитный спектр простирается от радиоволн с максимальной длиной (но минимальной частотой, а значит, самой низкой энергией) до микроволн, от инфракрасных волн и света видимого спектра до ультрафиолетового излучения, от рентгеновских до гамма‑лучей, имеющих наименьшую длину и, соответственно, максимальную энергию.

 

[59] Во избежание путаницы, если не указано иное, я буду использовать понятие «свет» для обозначения всех типов электромагнитного излучения.

 

[60] Легкие атомные ядра, существующие сегодня, были синтезированы в период с одной сотой секунды до трех минут после Большого взрыва. Этот период называют нуклеосинтезом. К таким ядрам относится несколько изотопов водорода (дейтерий и тритий с одним протоном и одним и двумя нейтронами в ядре соответственно), гелия (гелий‑3 и гелий‑4 с двумя протонами и одним и двумя нейтронами соответственно) и литий‑7 (с тремя протонами и четырьмя нейтронами). Более крупные атомные ядра возникли через сотни миллионов лет после взрывов умерших звезд.

 

[61] Учитывая, что электроны и протоны до этого не составляли атомов водорода, термин «рекомбинация» кажется мне неудачным.

 

[62] Цифры приводятся на основе анализа, проведенного командой спутника «Планк». См., например, http://arXiv.org/abs/1303.5082.

 

[63] То, что галактики могут разбегаться со скоростью, превышающей скорость света, не противоречит теории относительности Эйнштейна, хотя может показаться, что это так. Скорость света ограничивает быстроту распространения информации или частиц, но не скорость увеличения пространства как такового.

 

[64] George Gordon (Lord) Byron, “Darkness”, in The Works of Lord Byron: A New, Revised, and Enlarged Edition with Illustrations, ed. Ernest Hartley Coleridge, vol. 4 (London: John Murray, 1901), 42.

 

[65] В списке литературы к этой книге упоминается множество книг, как поддерживающих теорию суперструн (например, за авторством Брайана Грина, Митио Каку и Леонарда Сасскинда), так и опровергающих ее (Ли Смолин, Питер Уойт). Эта тема остается увлекательной даже несмотря на то, что имеющиеся у нас на сегодняшний день данные противоречат некоторым ее положениям, например, о существовании суперсимметрии. В любом случае цель моей книги – рассмотрение природы физической реальности в рамках того, что известно науке, а не того, что является лишь теорией (какой бы убедительной она ни была).

 

[66] В этом случае часто любят приводить пример с падающим лифтом. Чем быстрее он летит вниз, тем легче будет ваше тело. В свободном падении вы почувствуете, что вообще не имеете веса.

 

[67] В ньютоновской теории на гравитацию влияет только плотность газа. Этот факт указывает на огромное различие между представлениями об эволюции космоса с точки зрения этих двух теорий.

 

[68] Чтобы не усложнять восприятие текста для читателя, я буду достаточно редко использовать слова «метастабильный» и «фазовый переход».

 

[69] Вы можете резонно возразить, что временные промежутки, равные триллионным долям секунды, слишком малы, чтобы иметь значение. Вероятно, для нас это действительно так, но для элементарных частиц такой временной масштаб вполне релевантен. Например, за одну триллионную секунды фотон может преодолеть расстояние в одну треть миллиметра. Для физики частиц это огромная дистанция, равная примерно пяти миллионам атомов водорода.

 

[70] Разумеется, «ложный вакуум» не самое лучшее понятие, так как оно применяется только в том случае, если материя фиксируется в своем высокоэнергетическом состоянии и ей требуется дополнительная энергия, чтобы перейти в низкоэнергетическое. Представьте себе баскетбольный мяч, застрявший на кольце. Чтобы оказаться в низкоэнергетическом состоянии (на земле), ему требуется сильный удар. Читатель должен постоянно помнить, что мяч может катиться по склону вверх или вниз, и во втором случае его не обязательно останавливает какое‑то препятствие. Поэтому вместо термина «ложный вакуум» мы пользуемся выражением «смещенная энергия».

 

[71] Это второе определение, приведенное в Большом Оксфордском словаре. Первое связывают с первоначальным использованием этого термина Уильямом Джеймсом в статье 1895 года Is Life Worth Living: «Вся видимая природа пластична и бесчувственна. Это не единая вселенная, как нам бы хотелось ее назвать, но мультиверс» (International Journal of Ethics 6 [октябрь 1895]: 10). Джеймс называет мультиверсом то, что мы называем Вселенной, и мы не будем дальше углубляться в это.

 

[72] Читателю следует различать происходящее сегодня ускоренное расширение, питаемое темной энергией, и древнее ускоренное расширение, о котором говорит инфляционная космология. За ранним ускорением последовало более медленное расширение, которое длилось около пяти миллиардов лет и сменилось текущей стадией.

 

[73] В книге Мэри‑Джейн Рубенштейн (Mary‑Jane Rubenstein’s Worlds Without End: The Many Lives of the Multiverse (New York: Columbia University Press, 2013)) приводится подробное описание различных типов множественных вселенных, предлагавшихся учеными за все время существования космологической мысли.

 

[74] Буквой М изначально обозначалась мембрана, обобщение всех возможных поверхностей, которое также является фундаментальным и включает в себя одномерные струны. Но, согласно самому Виттену, сейчас М обозначает еще магию и мать.

 

[75] Lisa Randall, Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions (New York: Harper Perennial, 2005).

 

[76] В библиографии к этой книге перечислено несколько изданий, посвященных антропному принципу, например: The Anthropic Cosmological Principle Джона Бэрроу и Фрэнка Типплера, Cosmic Jackpot Пола Дэвиса и Before the Beginning сэра Мартина Риза. В моей собственной книге «Разрыв на краю создания» (A Tear at the Edge of Creation) я посвящаю достаточно большую часть своих рассуждений недостаткам антропного принципа как инструмента прогнозирования в физических науках. Существует как минимум два варианта принципа: сильный и слабый. Сильная версия принципа ссылается на космическую телеологию, то есть говорит о том, что космос создан таким образом, чтобы в нем появились мы. Этот принцип мы в дальнейшем рассматривать не будем.

 

[77] Этот пример я позаимствовал из книги моего друга Алекса Виленкина (Alex Vilenkin) Many Worlds in One. Однако я применяю его совершенно противоположным образом, так как подчеркиваю не преимущества, а недочеты рассуждений с использованием антропного принципа.

 

[78] George Ellis, “Does the Multiverse Really Exist?” Scientific American (August 2011).

 

[79] Я предлагаю то, что философы науки могли бы назвать «натуралистическим конструктивизмом», – доктрину, в которой научные теории представляют собой не открытия вневременных истин, но постоянно изменяющиеся человеческие конструкты, основанные на соотношении того, что можно наблюдать с помощью приборов, и математических моделей, которые мы создаем, чтобы описать то, что видим. Наши лучшие теории – это те, которые соответствуют данным, даже если мы не можем быть уверены в том, что они уникальны. Единственное, в чем мы можем быть уверены, – они не окончательны.

 

[80] Всего через несколько дней после того, как я написал эти строки, статья Стива Надиса с таким заголовком появилась в журнале Discover.

 

[81] О двойном пике в схеме поляризации впервые написали Мэттью Клебан, Томас С. Леви и Крис Сигурдсон в своей работе Observing the Multiverse with Cosmic Wakes от 15 сентября 2011 г. (http://xxx.lanl.gov/pdf/1109.3473.pdf.) Не могу не упомянуть, что Том Леви был моим научным консультантом в Дартмуте и что я был соавтором его первой публикации.

 

[82] Еще точнее было бы представить, как


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.