В которой рассматривается возможная роль сознания в мире квантовых эффектов — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

В которой рассматривается возможная роль сознания в мире квантовых эффектов

2021-01-31 108
В которой рассматривается возможная роль сознания в мире квантовых эффектов 0.00 из 5.00 0 оценок
Заказать работу

 

Я уже рассказывал вам о своей встрече с великим физиком Джоном Беллом, который посоветовал мне держаться подальше от исследований в области толкования квантовой механики в начале научной карьеры. Еще я говорил, что до встречи с Беллом писал Дэвиду Бому и тот ответил мне, что больше не курирует студентов. Как я ни старался, двери в мир квантовой механики закрывались одна за другой. Уже начав работать над докторской и опубликовав несколько работ по единым космологическим теориям с несколькими дополнительными измерениями, я сделал отчаянный шаг – обратился к человеку, чьи книги вдохновили меня в первый год учебы в университете, пускай даже в то время у меня уже возникали сомнения относительно его попыток связать воедино современную физику и восточный мистицизм. Звали этого человека Фритьоф Капра. Седьмого декабря 1984 года я отправил ему сердечное письмо, в котором жаловался, как мои взгляды на физику расходятся с принятым у большинства моих коллег принципом «заткнись и считай». Покоренный романтичным образом ученого‑бунтаря, я мечтал поработать вместе с ним над вопросами связи между сознанием и квантовым миром. К счастью (как мне кажется теперь), я опоздал. На тот момент Капра еще имел кое‑какие связи с лабораторией Лоуренса Беркли в Калифорнии, но не занимал постоянную университетскую должность и не работал со студентами. Несомненно, если бы Капра взял меня под крыло, моя карьера сложилась бы совершенно иначе. Но, оглядываясь назад, я радуюсь, что этого не произошло.

Мне было 25 лет, и я искал способы соединить рациональный научный подход, привитый мне в университете, с той глубокой духовностью, которую я воспитывал в себе с юности. Примерно в то же время я прочел «Философский камень» Колина Уилсона и задумался, действительно ли наш мозг может гораздо больше, чем то, ради чего мы его используем. Научно‑фантастическая книга Уилсона прекрасно описывала, как электростимуляция неокортекса может переключить мозг человека в режим гениальности.[149] Возможно ли, что у каждого из нас действительно имеется такой потенциал, ждущий, когда его откроют? Добавим к этому еще и факт, что за несколько лет до этого я, как и многие другие зрители по всему миру, был поражен выступлением израильского экстрасенса Ури Геллера и его умением гнуть ложки силой мысли. Как, черт побери, он это делал? Каким образом, следуя его инструкциям, люди запускали старые часы, просто взяв их в руки? Я лично вернул к жизни дедушкины наручные часы, которые были сломаны уже много лет. В то время работы блестящего фокусника и скептика Джеймса Рэнди, демонстрирующего, как проделывать такие трюки с помощью простой ловкости рук, еще не были так известны, как телевизионные выступления Геллера. Как здравый смысл мог противостоять притяжению магии?[150]

В своем юношеском энтузиазме я был уверен, что я не одинок в своих попытках связать физику с потусторонним миром. Многие великие викторианские ученые переживали увлечение мистикой, включая даже некоторых нобелевских лауреатов: лорд Рэлей, объяснивший голубой цвет неба, Дж. Дж. Томсон, открывший существование электронов, Уильям Рэмзи, первооткрыватель благородных газов, сэр Уильям Крукс и сэр Оливер Лодж, выдающиеся физики своего времени. Все они, как и многие другие, практиковали оккультизм и искали доказательства существования телепатии, общения с мертвыми, психокинеза и иных чудесных и сверхъестественных явлений.[151] Они считали пространство пронизанным невидимыми электромагнитными волнами, эфирными вибрациями, излучаемыми живой и мертвой материей. Гильермо Маркони довел до совершенства прием и передачу радиоволн – звуков и голосов из воздуха. Что еще могло скрываться незамеченным в этом зыбком мире?

Новая наука постоянно играет с границами возможного. Если наши ограниченные органы чувств не замечают столь многого, почему не предположить, что от них скрыто гораздо больше? Что, если существует душа, способная пережить материальное разложение тела? Современная наука в сочетании с исконным человеческим стремлением к вечной жизни могла бы открыть мир, населенный духами, а если бы нам были доступны правильные каналы коммуникации, духи могли бы ответить на наши отчаянные призывы. Крукс, Лодж и Томсон принимали участие в сотнях спиритических сеансов, каждый раз ожидая, что произойдет что‑то невероятное. Еще недавно наука была настолько гибкой, что прощала даже самым блестящим своим представителям подобные устремления. Неудивительно, что я решил отправиться для написания своей докторской диссертации в Англию. Я втайне надеялся найти связь между нашим миром и волшебной невидимой реальностью, которая иногда показывалась из тени возможного.

Викторианские джентльмены от науки пытались найти мост между миром материи и миром духа. Эту же попытку, хотя и в более формальном выражении, предприняли и основатели квантовой механики, изучавшие связь между квантовой физикой и ролью наблюдателя. Квантовая физика образовалась на месте столкновения реального и невозможного, рутинного повседневного опыта и альтернативного мира, в котором необычность является нормой. Какую позицию нам занять? Нужно ли бороться со странностями и вслед за Эйнштейном настаивать, что реальность должна быть рациональна по своей сути? Или нам следует сойти со старого пути реалистичности и углубиться в новый мир квантовых эффектов, приняв его отклонение от нормы за новый мировой порядок?

Если мы выбираем второй вариант, возникает следующий вопрос: как далеко мы готовы зайти? Так как различные интерпретации квантовой механики не так‑то легко поддаются экспериментальному подтверждению, большинство физиков предпочитает не иметь с ними дела. Неважно, что, по‑вашему, квантовая механика говорит нам о мире – значение имеют лишь данные на наших детекторах. Давайте исследовать реальность, не поддаваясь на субъективные интерпретации. В конце концов, разве суть науки не состоит в независимости от субъективного выбора?

Подобная слепота к тайнам и загадкам квантовой физики шокирует ученых из другого лагеря. «Как вы можете спокойно спать по ночам, зная, что мы ничего не понимаем в самой сути реальности? – вопрошают они. – Нелокальность уничтожает пространственное разделение между классическими (большими) и квантовыми (малыми) явлениями. Закрывать глаза на это – значит быть подобными церковникам, которые отказывались посмотреть в телескоп Галилея».

Из этого тупика нет выхода. Вот как Максимиллиан Шлоссхауэр, Йоханн Кофлер и Антон Цайлингер резюмировали ситуацию после проведения опроса среди участников конференции «Квантовая физика и природа реальности», прошедшей в июле 2011 года в Австрии:

 

Квантовая теория основывается на четкой математической базе, имеет огромное значение для естественных наук, позволяет делать потрясающе точные предсказания и играет ключевую роль в современном технологическом развитии. Тем не менее за 90 лет с момента ее создания научное сообщество так и не пришло к единому мнению относительно толкования ее базовых единиц. Наш опрос призван напомнить об этом необычном положении дел.[152]

 

Существуют различные подходы к ситуации – от умеренных до радикальных. Начнем с первых. Старая добрая копенгагенская интерпретация задает правила игры: между квантовой системой и классическим измерительным устройством существует четкое разделение. Мы, наблюдатели, никогда не вступаем в прямой контакт с квантовой системой – за нас это делают детекторы. Мы лишь интерпретируем результаты взаимодействия между системой и измерительными приборами после того, как в результате усиления воздействия видим вспышки или следы или слышим щелчки на фотографическом или цифровом регистраторе. Волновая функция, фундаментальная единица квантовой физики, представляет собой математическое выражение возможностей – потенциальных результатов измерения. Это не физическая величина, так как она не имеет связи с физической реальностью. В отличие от классической физики, в которой уравнения движения напрямую ссылаются на конкретный движущийся объект (шар, волну или автомобиль), в квантовой физике уравнение описывает амплитуду вероятностей. Предположим, что мы хотим измерить местоположение частицы. До измерения ее волновая функция распространяется по всему пространству (или области движения частицы, если она ограничена), отражая различные вероятности ее нахождения здесь или там. Уравнение Шрёдингера описывает, как волновая функция развивается во времени с учетом всех возможных сил, влияющих на частицу. Когда мы проводим измерение и обнаруживаем частицу в определенном месте, волновая функция коллапсирует. Она перестает быть возможностью и превращается в реальность, мгновенно переходя от распространенности во всем пространстве к концентрации в одной точке. Строго говоря, акт измерения делает измеряемое реальностью, перенося его из зыбкого мира квантовых вероятностей в конкретный мир обнаружения и чувственного восприятия. Если говорить коротко, измерять – значит создавать.

Но если начать задавать вопросы об этом сценарии, он оказывается гораздо сложнее, чем на первый взгляд. Когда мы говорим: «Измерять – значит создавать» (как делал Паскуаль Йордан), кто или что создает реальность? Согласны ли мы наделять способностью к творению механическое измерительное устройство? Убивает ли счетчик Гейгера кота Шрёдингера, когда регистрирует частицу и выпускает яд? Или же для наблюдения нужен мыслящий наблюдатель, обладающий сознанием, намерением провести измерение и рациональной способностью интерпретировать его результаты? Если для создания реальности требуется мыслящий наблюдатель, как объяснить, что Вселенная существовала без него миллиарды лет? Означает ли это, что существует вездесущий Бог, как предполагал Джордж Беркли в XVIII веке? Возможно ли, что Вселенная «схлопнула» свою собственную волновую функцию при переходе из квантового состояния в начале времен к классической расширяющейся модели? Если да и если нелокальность существовала в течение всей истории космоса, значит ли это, что все может до сих пор оставаться связанным?

Лауреат Нобелевской премии Юджин Вигнер, изучавший роль математической симметрии в квантовой механике, прямо обращался к вопросу роли сознания в квантовой физике: «Когда область действия физической теории была расширена до микроскопических явлений… понятие сознания снова вышло на передний план. Законы квантовой механики невозможно было сформулировать полно и последовательно, не ссылаясь на сознание».[153] Говоря «снова», Вигнер имеет в виду Рене Декарта с его афоризмом Cogito ergo sum («Мыслю, значит существую»), признающим верховенство мысли. Вигнер, как и Гейзенберг до него, понимал, что любому измерению требуется сознание, которое его истолкует. От наблюдаемого объекта к детектору и от него к сознанию наблюдателя простирается единый континуум. В классической физике разумный наблюдатель тоже необходим – для разработки эксперимента и толкования его результатов, – но разница состоит в том, что в квантовом мире измерение делает измеряемое реальностью. Без сознания реальности не существует. Задача, которую Джон Белл называл центральной проблемой квантовой механики, состоит в том, чтобы найти границу между реальным классическим «внешним» миром и связанным с ним «внутренним» квантовым уровнем реальности.

Для того чтобы проиллюстрировать эту проблему, используется метафора «друга Вигнера». Представим себе, что друг Вигнера, физик‑экспериментатор, создал аппарат для измерения спина электрона. Он может быть направлен вверх или вниз, и до начала измерений, когда электрон находится в суперпозиции, вероятность каждого из этих результатов составляет 50 %. Начав опыт, друг Вигнера обнаружит спин, направленный либо вверх, либо вниз. После того как измерение проведено, не существует ни суперпозиции, ни вероятностей. Допустим, Вигнер знает об этом эксперименте, но спрашивает о результатах только после его завершения. Другу Вигнера результат уже известен, то есть волновая функция уже сколлапсировала в одно из двух возможных состояний. Однако для самого Вигнера электрон остается в суперпозиции до тех пор, пока его друг не ответит на вопрос о результатах опыта. «Подобная дуалистичность совершенно бессмысленна», – писал реальный Вигнер. Ведь из сложившейся ситуации можно сделать вывод, что до тех пор, пока Вигнер не задаст своему другу вопрос, сам друг будет находиться в суперпозиции («состоянии заморозки»), соответствующей двум возможным результатам измерений. Все мы помним, чем это закончилось для кота Шрёдингера. Вигнер заключает: «Соответственно, мыслящее существо должно играть в квантовой механике иную роль, нежели неодушевленный вычислительный прибор».[154] Если точнее, «сознание неизбежно и неизменно входит в [квантовую] теорию».[155]

Физик Джон Уилер из Принстона развил идеи Вигнера в своей концепции «соучастной Вселенной». Он заявил, что акт измерения представляет собой нечто большее, чем просто наблюдение: он определяет, как Вселенная будет развиваться во времени с момента измерения (и даже в обратном направлении!). Как только экспериментатор решает измерить свойства электрона определенным образом (например, с помощью детектора частиц, а не волнового интерферометра), будущее Вселенной изменяется. «Изменяется самим экспериментатором. Нужно слово “наблюдатель” и заменить его словом “участник”», – заявлял Уилер на конференции в Оксфорде в 1974 году.[156]

Для того чтобы прояснить свою точку зрения, Уилер предложил мысленный эксперимент. Предположим, что ученый устанавливает источник фотонов, которые должны преодолеть препятствие с двумя прорезями, как в обычных опытах с квантовой интерференцией. Источник можно настроить таким образом, чтобы за определенный промежуток времени он испускал только один фотон. За препятствием установлен экран, на котором должен отображаться ожидаемый экспериментатором интерференционный узор из черных и белых полос. Этот экран имеет колесики, которые позволяют ученому двигать его вдоль траектории движения фотонов после прохождения через препятствие. За экраном имеются два детектора, каждый из которых ориентирован на одну из прорезей в препятствии.

 

Диаграмма эксперимента Уилера с отложенным выбором

 

Таким образом, если экран сдвинут, детектор может уловить, через какую прорезь двигался фотон. Существует два возможных варианта развития событий: или экран находится на месте и экспериментатор видит на нем интерференционный узор, или экран сдвинут в сторону и тогда наблюдатель знает, через какую прорезь прошел фотон. Но вот в чем хитрость: экспериментатор может решить, сдвигать экран или нет, только после прохождения фотона через прорези.

Уилер предположил, что фотон будет реагировать на выбранное устройство наблюдения. Он назвал свой опыт экспериментом с отложенным выбором. Свободный выбор экспериментатора определяет физическое состояние фотона (волна он или частица) и, судя по всему, этот выбор направлен назад в прошлое. Уилер объяснял эту идею так: «Прошлое не существует иным образом, кроме как в виде зафиксированного результата в настоящем… Вселенная не находится где‑то вовне, независимая от наших наблюдений. Вместо этого мы имеем дело со своего рода соучастной Вселенной». Позже он отмечал в описании аналогичного эксперимента с использованием космического источника света: «Мы решаем, что фотон должен был сделать, после того, как он уже это сделал». Наш выбор вмешивается в прошлое частицы. Уилер экстраполирует свою идею на Вселенную в целом: наблюдатель «дает миру возможность воплотиться в реальности за счет придания ему смысла». «Если говорить кратко, – пишет он, – без сознания нет коммуницирующего общества для создания смыслов, а без них нет и мира… Вселенная порождает сознание, а сознание придает Вселенной смысл».[157]

Выводы Уилера кажутся несколько натянутыми, но, как ни удивительно, его концепция отложенного выбора недавно была подтверждена экспериментально, по крайней мере для квантовых систем. В 2007 году Венсан Жак и его коллеги (среди которых был и Алейн Аспект, который, как вы помните, продемонстрировал наличие нарушений в неравенстве Белла) провели эксперимент, описанный Уилером, в точности следуя его инструкциям и обеспечив невозможность коммуникации на скоростях вплоть до световой. Таким образом, фотон не мог «знать», как именно он будет измеряться.[158] В конце своего труда Жак и соавторы цитируют Уилера: «Мы наблюдаем странную инверсию нормального движения времени. Передвигая зеркало, мы неизбежно оказываем влияние на то, что мы можем сказать о прошлом наблюдаемого фотона».[159]

Нелокальность поражает нас, заставляя пересмотреть глубоко укоренившиеся в нашем сознании концепции, например причинно‑следственную связь. Может ли настоящее действительно определять прошлое? Возможно ли перенести эти странные отношения с хрупких квантовых систем на более крупные объекты или даже на всю Вселенную целиком, как предлагал Уилер? «Может ли понятие Большого взрыва быть лишь упрощенным описанием совокупного влияния миллиардов и миллиардов элементарных действий соучастного наблюдения, направленных в прошлое?[160]» Уилер поступает мудро, разделяя сознание и акт наблюдения, который он понимал как своего рода регистрацию явления. Смысл, то есть то, как сознание толкует эту регистрацию, – это уже «отдельная история». Объяснения Уилера звучат неоднозначно, потому что он не знает правильного ответа. Как и никто другой.

 

Может ли реальность строиться на миллиардах миллиардов актов соучастного наблюдения? Сегодня мы все еще бесконечно далеки от понимания глубинного строения вселенной, чтобы ответить на этот вопрос. Чем больше деталей мы замечаем, тем меньше узнаем обо всем плане в целом. Тот факт, что мы способны задавать такие странные вопросы, показывает, насколько мы не уверены в своем понимании оснований квантового мира и следствий из них.[161]

 

Неудивительно, что, столкнувшись с этой странностью, большинство физиков прекращают попытки объяснить квантовую физику и принимают копенгагенскую интерпретацию. До появления однозначного экспериментального теста интерпретация представляет собой личный выбор. Еще один подход, не менее странный, чем предыдущие, но удивительным образом привлекающий множество физиков, называется многомировой интерпретацией (MWI). Впервые она была предложена Шрёдингером на лекции в Дублине как «безумная идея», а затем в 1957 году ее развил в своей докторской работе ученик Уилера физик Хью Эверетт. В 1960–1970‑х многомировую интерпретацию расширил Брайс Девитт, превратив ее в поистине радикальную концепцию. Многомировая интерпретация утверждает, что при измерении не происходит коллапса волновой функции. Все возможные результаты измерений (все вероятности) реализуются одновременно в параллельных мирах (вселенных). Если верить MWI, все варианты развития истории сосуществуют в своего рода Мультивселенной, и их количество увеличивается при каждом измерении. Кот Шрёдингера жив в одной вселенной и мертв в другой, спин электрона направлен вверх в одном мире и вниз – в параллельном ему, фотон является частицей в одном месте и волной в другом. Создавая бесчисленное количество вариантов результата, реализуемое в бесконечном множестве миров, MWI устраняет парадоксы квантовой механики.

У Хорхе Луиса Борхеса есть рассказ «Сад расходящихся тропок», в котором описан лабиринт, существующий во времени, а не в пространстве, и каждая развилка означает два альтернативных продолжения истории. Точно так же и в многомировой интерпретации различные возможные истории существуют бок о бок, пускай каждый из вариантов недоступен для другого. Ключевым положением теории является утверждение о том, что волновая функция – это не просто математический термин, а реальное явление, направляющее параллельное развитие истории. MWI – это попытка вернуть физике реальность, пусть и за счет предположения о существовании постоянно растущей Мультивселенной с постоянно разветвляющейся альтернативной историей. Главным сторонником MWI является теоретик квантовой информации Дэвид Дойч из Оксфордского университета. В своей последней книге «Начало бесконечности» он, не стесняясь, называет копенгагенскую интерпретацию «плохой философией», которая «не только неверна, но и активно препятствует дальнейшему росту знаний».[162] Дойч пишет: «Идея состоит в том, что квантовая физика подрывает самые устои разумного: частицы имеют взаимоисключающие свойства (будучи и частицами, и волнами одновременно), точка. Любые попытки критиков оказываются неэффективными, так как в них используется “классический язык” вне области его применения». По словам Дойча, вся «расплывчатость», возникающая из‑за нелокальности, коллапса волновой функции и принципа зависимости реальности от наблюдателя, исчезает после принятия реальности волновой функции и многомировой Мультивселенной. Однако для большинства физиков этот выбор все же не так очевиден.

Никто не может (и не должен) с уверенностью заявить, что многомировая интерпретация решает проблему измерений в квантовой механике. Как и в случае с теорией Бома о нелокальности и скрытых переменных, нам предлагается странная альтернатива коллапсу волновой функции (которая в этом случае вообще не коллапсирует). Одновременно с этим вводится новый уровень сложности – параллельное существование бесчисленных разветвляющихся миров, отделенных друг от друга и никогда не контактирующих. Где находятся эти миры, реальные, не недоступные для нас? Когда именно в процессе измерения происходит разветвление? Кроме того, не существует убедительных экспериментальных данных, которые могли бы проиллюстрировать разницу между теорией Бома и MWI или утвердить точку зрения сторонников MWI как жизнеспособную альтернативу копенгагенской интерпретации (пускай некоторые физики и утверждают, что если возможна интерференция с крупными объектами вроде кота Шрёдингера, то могут существовать и разные, различающиеся в мелочах варианты истории). До тех пор пока не будет проведен конкретный практический эксперимент, идея о существовании параллельных не взаимодействующих между собой вселенных говорит нам ровно столько же об измерениях и природе реальности, сколько теория мультиверса – о том, почему мы существуем в этом мире (см. часть I книги).

Значительным шагом вперед (хотя и неоднозначным как решение для проблемы измерений) является концепция квантовой декогерентности, которая устраняет («декогерирует») проблему квантовой интерференции между различными возможными результатами экспериментов за счет взаимодействия между квантовой системой и окружающей ее средой. В соответствии с этой концепцией классическая физика появляется в результате утраты квантовой интерференции. Классический мир крупных неквантовых объектов возникает тогда, когда мы принимаем в расчет взаимодействие со средой. Некоторые физики представляют декогерентность как естественное продолжение копенгагенской интерпретации с учетом того, что процесс измерений полностью уничтожает какую бы то ни было квантовую когерентность в волновой функции. Другие считают декогерентность продолжением многомировой интерпретации Эверетта, в которой она является причиной расхождения альтернативных миров и историй. Вариация концепции квантовой декогерентности, известная как «декогерентный исторический формализм» или «согласующиеся истории», была предложена Робертом Гриффитсом в 1984 году и независимо от него разработана Роланом Омне, а затем повторно открыта и применена в квантовой космологии Марри Гелл‑Маном и Джеймсом Хартлом в 1990 году. Этот вариант предлагает рассматривать всю Вселенную в качестве квантовой системы. Трудность в том, что, так как Вселенная считается «закрытой системой», в ней отсутствуют внешние наблюдатели или среда для декогеренции глобальной волновой функции. Переход от квантовой Вселенной к классической произошел в процессе ее собственной эволюции, так как различные варианты истории, каждый из которых включает в себя свой набор вероятностей, развиваются независимо друг от друга (то есть декогерентно по отношению к целому). Конкретные акты декогеренции случаются в результате конкретных событий (взаимодействий между частицами), которые происходят в рамках определенной временной линии. Мы живем в одном сегменте этой постоянно разветвляющейся истории, и в нем же находится Вселенная со свойствами, которые мы регистрируем в ходе измерений. К сожалению, мы не знаем механизма, согласно которому предпочтение отдается именно нашей Вселенной (если таковой вообще существует).

Концепция декогерентности разделяет традиционный взгляд о том, что измерение заставляет волновую функцию коллапсировать, отраженный в копенгагенской интерпретации. Измерение – это событие, вызывающее резкую декогеренцию, приближение, в котором декогеренция представляется в идеальном виде как мгновенное точное действие. Существуют и другие виды «измерений», которые не так резки, но тоже влияют на эволюцию волновой функции. Физик Джон Хартл писал: «Вероятности можно присвоить различным положениям Луны в небе или колебаниям плотности материи после Большого взрыва… вне зависимости от того, участвуют ли эти события в ситуации измерения и существует ли наблюдатель, регистрирующий их значения».[163] Иными словами, условия ранней Вселенной определяют разветвления ее будущей истории, включая появление людей как неизбежный результат взаимодействия между такими условиями и непоследовательностью, присущей квантовой физике. Согласно этой концепции, участники не влияют на прошлую историю Вселенной.

Декогерентный подход четко демонстрирует искусственность разделения между классическим наблюдателем или детектором и квантовой системой. Он показывает, что классический мир, который мы воспринимаем своими органами чувств, представляет собой следствие из свойств материи, результат взаимодействия многокомпонентных квантовых систем друг с другом и с окружающей средой. Чем больше система, тем больше волновых функций требуется для описания всех ее элементов и тем сложнее привести их в когерентные состояния, отображающие квантовую суперпозицию. Системы в квантовой суперпозиции очень хрупки и коллапсируют даже под самым минимальным внешним влиянием, будь то фотон солнечного света, космический луч или колебание гравитационного поля от проезжающего мимо грузовика. Декогеренция позволяет понять, как классический мир возникает из квантового, существующего за пределами нашего восприятия, хотя и не объясняет, где именно находится граница между классической и квантовой физикой. Джон Белл писал об этом так:

 

Проблема [квантовой механики] формулируется следующим образом: как именно разделить мир на аппаратную часть… которую мы можем обсуждать… и не подлежащую обсуждению квантовую систему? Сколько электронов, атомов или молекул составляют «аппарат»? Математика обычной теории требует такого разделения, но не объясняет, как оно происходит.[164]

 

Что еще важнее, декогеренция не разрешает проблему измерения по той простой причине, что его результаты продолжают оставаться случайными, а не определяются каким‑то скрытым порядком. Например, до первого измерения мы не можем предсказать, будет фотон иметь горизонтальную или вертикальную поляризацию. Несмотря на некоторые разъяснения, которые дает нам концепция декогерентности (теперь нам не нужно задумываться, жив кот Шрёдингера или нет либо куда девается Луна, пока мы на нее не смотрим), борьба с квантовым призраком нелокальности и с нашей неспособностью объяснить основы физической реальности еще не закончена. Кроме того, мы до сих пор не понимаем, какую роль в определении этой реальности играет сознание – и играет ли вообще.

 

Глава 28. Назад к истокам


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.