Сказка о Резерфорде, придумавшем космическую модель атома — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Сказка о Резерфорде, придумавшем космическую модель атома

2021-01-29 107
Сказка о Резерфорде, придумавшем космическую модель атома 0.00 из 5.00 0 оценок
Заказать работу

 

Дзинтара открыла книгу и прочитала:

 

– «История атомной физики сложилась бы иначе, не будь в Шотландии так мало пахотных земель».

 

– Ты уверена, что в этой фразе нет ошибки? – осторожно спросила Галатея. – Может, здесь случайно склеились две фразы из разных историй?

– Сейчас увидим, – сказала озадаченно Дзинтара и продолжила чтение:

 

– «Из‑за нехватки сельскохозяйственной земли в Шотландии британское правительство стало раздавать безземельным фермерам бесплатные билеты на пароходы, плывущие в отдалённые и малонаселённые английские колонии, где бедняки могли получить собственный участок земли. Шотландскому семейству Резерфордов достался бесплатный билет не в Канаду, как многим другим, более удачливым фермерам, а в более далёкую Новую Зеландию, где глава семейства стал выращивать лён. В семье было 12 детей, из которых четвёртый – Эрнст Резерфорд обладал прекрасной памятью, богатырской силой и здоровьем. Ещё он отличался от своей фермерской семьи, жившей на окраине мира, тем, что увлёкся наукой и захотел вернуться в Англию, где фермерам приходилось туго из‑за тесноты, а учёным было полное раздолье.

Сильное желание – главный источник успехов человека. Эрнст прекрасно закончил школу и получил стипендию для обучения в лучшем колледже Новой Зеландии. В те времена там учились всего 150 студентов и преподавали семь профессоров, а сейчас этот колледж стал Новозеландским университетом.

В 21 год Эрнст закончил колледж, защитив магистерскую работу по радиоволнам, несколькими годами ранее открытым Герцем. Для их регистрации новозеландский магистр придумал радиоприёмник нового типа, основанный на намагничивании железа при высокочастотном разряде. Однако мечта об Англии по‑прежнему оставалась мечтой. Что делать дальше?»

 

– Да, что дальше? – нетерпеливо спросила Галатея.

– Эрнст подал заявку на стипендию, позволявшую учиться в Англии. Но такая стипендия была всего одна на Новую Зеландию и выдавалась раз в два года. Резерфорд работал учителем в средней школе и с нетерпением ждал решения по своей заявке. К сожалению, стипендию выиграл другой человек.

– Эх! – расстроилась Галатея, болевшая за новозеландского фермера, увлечённого наукой.

– Но случилось неожиданное – выигравший отказался от стипендии и остался в Новой Зеландии. Вместо него в Англию поехал счастливый Резерфорд.

– Мечта сбылась! – засмеялась Галатея.

– Резерфорд прибыл в Кембриджский университет и приступил к работе в Кавендишской лаборатории, став аспирантом знаменитого Дж. Дж. Томсона.

– Чем же он был знаменит? – поинтересовался Андрей.

– Томсон был директором прославленной Кавендишской лаборатории Кембриджского университета и активно исследовал катодные лучи. Учёный доказал, что независимо от материала катода они состоят из одинаковых частиц с одним и тем же соотношением заряда к массе. Это отношение Томсон измерил по отклонению траекторий частиц в электрическом и магнитном полях и стал открывателем электронов – мелких заряженных частиц материи. В 1906 году он получит за это открытие Нобелевскую премию. Ленард, который тоже исследовал катодные лучи и был близок к доказательству того, что они состоят из частиц, упустил право называться открывателем электронов – и очень обиделся.

– Он и с рентгеновскими лучами опоздал! – удивился Андрей.

– Да, Ленарду хронически не везло. Хотя за исследование катодных лучей он получил Нобелевскую премию 1905 года, самые яркие открытия, связанные с этими лучами, уплыли из его рук.

Томсон не только открыл электроны, но и предположил, что они входят в состав вещества, то есть являются частичками атома. Раньше учёные рассматривали атомы как нечто целое и неделимое – Томсон первый попытался создать более детальную модель атома, которая должна была включать отдельные частицы – электроны. Но электроны, заряженные отрицательно, отталкиваются друг от друга. Значит, их взаимное отталкивание должно компенсироваться присутствием материи с положительным зарядом, чтобы атом в целом получился нейтральным. И Томсон выдвинул следующую гипотезу: атом – это массивное облако положительно заряженной материи, в котором, как изюм в пудинге, находятся лёгкие отрицательные электроны. Эту модель так и стали называть: «пудинговая модель атома».

– Звучит аппетитно! – одобрила Галатея.

– Таково было состояние дел в атомной физике и в Англии, когда туда прибыл крепкий новозеландский парень, сын фермера Эрнст Резерфорд. Приборов в лаборатории Томсона не хватало, учёные шутили: «В Кавендише, готовя эксперимент, надо было левой рукой собирать прибор, а правой держать обнажённый меч».

Уже в своих первых работах Резерфорд сделал важное открытие – обнаружил новый тип лучей. В 1898 году, используя естественный источник радиоактивного излучения, он показал, что в нём присутствует два вида частиц: положительно заряженные массивные альфа‑частицы и отрицательно заряженные лёгкие бета‑частицы, которые по‑разному реагировали на магнитное поле, отклоняясь в разных направлениях.

– Что это за частицы? – спросила Галатея.

– Бета‑частицы оказались электронами, которые открыл Томсон. Альфа‑частицы были ядрами гелия, которые в тысячи раз тяжелее электрона. Через год физик Поль Виллар показал, что есть ещё и нейтрально заряженные частицы, которые не отклоняются в магнитном поле, – их назвали гамма‑лучами. Эти гамма‑лучи были электромагнитным излучением, только ещё более коротковолновым, чем рентгеновские лучи.

Работа молодого Резерфорда была очень успешной, но попасть в круг английских профессоров ему не удалось: осенью 1898 года ему предложили занять место профессора в канадском университете в Монреале.

 

 

– Он был вынужден снова уехать из Англии? – расстроилась Галатея.

– Да. Но Резерфорд доказал, что работать на мировом уровне можно даже в провинциальном университете. В Канаде он познакомился с младшим лаборантом Содди.

– Младший лаборант – это на одну ступеньку выше дворника? – спросил Андрей.

Дзинтара улыбнулась:

– За пять лет совместной работы, к 1903 году, Резерфорд и Содди создали теорию радиоактивного распада – так называемое правило Резерфорда‑Содди. Тогда царило мнение о неделимости и неизменности атомов. Молодые исследователи опровергли это мнение, утверждая: «В результате атомного превращения образуется вещество совершенно нового вида, полностью отличное по своим физическим и химическим свойствам от первоначального вещества».

Одно из открытий Резерфорда началось с того, что сквозняк менял показания прибора. Один из сотрудников измерял радиоактивность тория с помощью электроскопа. Оказалось, что результаты эксперимента зависят от того, открыта или закрыта дверь в лабораторию.

– Какая‑то мистика! – воскликнул Андрей. – Радиоактивность – явление на уровне атомного ядра, повлиять на него можно только с помощью… ну, например, атомного реактора. Сквозняк и радиоактивность никак не связаны!

– Не совсем так. Резерфорд начал исследовать «явление сквозняка» и догадался, что радиоактивный торий испускает газ – торон, тоже радиоактивный. Сдувая этот газ, сквозняк менял показания прибора! В науке не бывает мелочей, учитывать надо всё, вплоть до случайного ветерка. Позже выяснилось, что торон является одним из изотопов радиоактивного инертного газа радона.

После этих открытий, уже через несколько лет, в 1910 году, младший лаборант Содди стал академиком, или членом Королевского общества, а потом – нобелевским лауреатом.

– Вот как помогла ему дружба с сыном новозеландского фермера! – засмеялась Галатея.

– Эрнст Резерфорд тоже приобрел широкую известность и был выбран академиком в 1903 году. После восьми с лишним лет работы учёный покинул Канаду и триумфально вернулся в Англию. Весной 1907 года он начал работать профессором в Манчестерском университете, получая в два с половиной раза больше, чем в канадском университете. В следующем, 1908, году ему присудили Нобелевскую премию «за проведённые им исследования в области распада элементов в химии радиоактивных веществ». Узнав о премии, которую присудили почему‑то по химии, а не по физике, Резерфорд произнёс ехидную крылатую фразу: «Вся наука – или физика, или коллекционирование марок».

В Манчестерском университете Резерфорд создал новую лабораторию, которая затмила своими результатами Кавендишскую. Кто‑то сказал профессору:

– Вы – счастливый человек… Всегда на гребне волны!

– Да, но я сам и поднимаю эту волну, не так ли? – откликнулся самоуверенный Резерфорд.

 

 

Учёный из России, Пётр Капица, который работал в лаборатории Резерфорда, дал ему прозвище Крокодил. Капица так объяснял придуманное им прозвище: «Это животное никогда не поворачивает назад и потому может символизировать резерфордовскую проницательность и его стремительное продвижение вперёд».

Свой главный научный результат Резерфорд получил уже после присуждения Нобелевской премии. По его предложению в 1908 году физики Гейгер и Марсден стали изучать процессы рассеяния альфа‑частиц на тонкой золотой фольге и получили загадочный результат: примерно 10 000 альфа‑частиц пролетали сквозь фольгу, слегка отклоняясь от своего пути, но одна из них отклонялась сильно – вплоть до того, что летела назад.

– А что здесь загадочного? – спросила Галатея.

– Согласно Томсону, атом представлял собой рыхлое, положительно заряженное облако с вкраплениями электронов. Облако должно быть размером с атом. Электроны, которые весили в семь тысяч раз меньше, чем альфа‑частицы, никак не могли отклонить их назад. Ещё с меньшим успехом это могло сделать рыхлое облако с положительным зарядом. Эрнст Резерфорд писал про отражение назад альфа‑частиц: «Это было почти столь же невероятно, как если бы вы стреляли 15‑дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанёс удар».

– Что такое 15‑дюймовый снаряд? – влезла Галатея с посторонним вопросом.

Андрей поднял глаза к потолку, вздохнул и сообщил:

– Это снаряд из пушки с диаметром дула почти в 40 сантиметров.

– Ого… – испуганно притихла Галатея.

Дзинтара невозмутимо продолжила:

– Томсона итоги эксперимента не обескуражили: он полагал, что большое количество мелких отклонений может, суммируясь, развернуть некоторые альфа‑частицы. Но его мнение не было подкреплено расчётом и не удовлетворяло цепкого и упрямого Резерфорда‑Крокодила.

В 1904 году японский физик Нагаока предложил другую планетарную модель атома: в её центре находилось массивное положительное ядро, а вокруг, как кольца Сатурна вокруг планеты, вращались электроны. Резерфорд долго размышлял над результатами Гейгера и Марсдена и в 1911 году предложил свою планетарную модель атома, в которой крошечное положительное ядро было в десять тысяч раз меньше самого атома, но, благодаря своей массе и сильному электрическому полю, оно могло развернуть быстро летящие альфа‑частицы.

– Верно! – просиял Андрей. – Ведь чем меньше радиус, тем сильнее поле. Это правило действует и для чёрных дыр, и для атомных ядер! Только поля у них разные – гравитационное и электрическое.

– Молодец, Андрей! – в свою очередь просияла Дзинтара. – Ты быстро соображаешь!

Галатея недовольно покосилась на брата.

– Не перебивай!

– Ничего, – успокоила её Дзинтара, – интересно же по ходу сказки обсуждать самые важные моменты. Итак, Резерфорд предложил свою модель атома. С одной стороны, он был ею очень доволен: «Теперь я знаю, как выглядит атом!» С другой – учёный рассматривал её как… рабочую модель, которая помогает объяснить интересные эксперименты, но которой далеко до настоящей теории. Однако среди учеников Резерфорда был человек, принявший всерьёз модель атома, созданную учителем.

– Кто это? – заинтересовалась Галатея.

– Это уже новая история, которую вы услышите завтра. А сегодня пора спать.

Дзинтара закрыла книжку, несмотря на протестующие голоса детей, и улыбнулась:

– Не надо спешить! Терпение нужно не только учёным.

 

Примечания для любопытных

 

Хантаро Нагаока (1865–1950) – известный японский физик. В 1904 году предложил первую планетарную модель атома с массивным положительным ядром и вращающимися вокруг него, как кольца Сатурна, отрицательными электронами.

Эрнст Резерфорд (1871–1937) – знаменитый британский физик из Новой Зеландии. Лауреат Нобелевской премии по химии (1908). Экспериментально доказал наличие крошечного плотного и тяжёлого ядра внутри сравнительно большого и почти пустого (в остальных областях) атома. Создатель известной школы физики: 12 учеников Резерфорда стали нобелевскими лауреатами.

Фредерик Содди (1877–1956) – известный британский радиохимик, лауреат Нобелевской премии по химии (1921).

Пётр Капица (1894–1984) – знаменитый советский физик. Работал вместе с Резерфордом в 1921–1934 годах. Лауреат Нобелевской премии по физике (1978).

Ганс Гейгер (1882–1945) – известный немецкий физик, работавший с Резерфордом. Создатель счетчика Гейгера (или Гейгера‑Мюллера).

Эрнст Марсден (1889–1970) – известный английский физик, работавший с Резерфордом.

 

Сказка о суперсыщике Нильсе Боре, который отыскал связь между атомом Резерфорда, линиями Фраунгофера и кривой Планка

 

Тёмные полоски в солнечном спектре, открытые Фраунгофером, оказались супертайной. Всё было неизвестно: откуда они берутся; почему тёмные, а не светлые; чем обусловлена степень их темноты и что определяет их расположение в радуге спектра, то есть – что задаёт длину волны этих линий.

Длина волны стала практически единственной точной величиной, характеризующей спектральную линию. Сначала казалось, что тёмные полоски в солнечном спектре расположены случайно. Но постепенно выяснилось, что это не так. Длины волн линий, связанных с водородом, подчинялись простым закономерностям и могли быть описаны несложной математической формулой, которая позволяла вычислить длины волн целой серии спектральных линий. Различные серии спектральных линий были открыты швейцарским математиком Бальмером, американским физиком Лайманом, немецким учёным Пашеном. Все известные серии водородных линий обобщил шведский исследователь Ридберг в красивой формуле:

 

1/Длина волны = R (1/N2– 1/K2).

 

Длина волны зависела от целых чисел N и K. Если положить N = 1, то изменение K от 2 до ∞ (в математике этот значок означает бесконечность) давало серию линий Лаймана. Для N = 2 и K от 3 до ∞ получалась серия Бальмера. А N = 3 и K от 4 до ∞ соответствовали линиям Пашена. R была константой, которая вычислялась при сравнении формулы Ридберга с реальным спектром.

Почему линии спектра водорода строго следуют простым числовым соотношениям? Это было загадкой. Её решением занялись физики‑атомщики.

– Почему они? – удивился Андрей. – Какая связь между линиями Фраунгофера и радиоактивными веществами?

Дзинтара усмехнулась:

– Действительно, линии Фраунгофера – это солнечный свет и стеклянные призмы. Атомная физика Резерфорда – это высокое напряжение, гудящие вакуумные насосы и опасные радиоактивные вещества, от которых приходится отгораживаться свинцовыми пластинами, – ничего похожего на солнечные исследования Фраунгофера! Тем не менее между ними существовала тесная и таинственная связь, но, чтобы её раскрыть, понадобился не просто сыщик, а суперсыщик!

– Космический суперсыщик!

– Верно. Такой суперсыщик родился в семье академика Датской королевской академии. Его звали Нильс, и у него был брат Харальд. В доме отца Нильса собирались друзья‑учёные и вели длинные беседы. Не многим детям посчастливилось слушать споры четырех академиков: философа, биолога, лингвиста и физика. Может, именно благодаря этим беседам умных и разносторонних людей Нильс приобрел удивительную широту взглядов и смелость мышления.

Нильс так хорошо учился по физике и математике, что уже в школе критиковал учебник физики – за то, что тот неправильно трактовал отдельные вопросы. Зато сочинения вызывали у него настоящую проблему. Бор был немногословен и иногда сдавал сочинение, состоящее из пары фраз.

В университете Нильс был «тяжёлым» студентом. Если по лаборатории прокатывался гулкий взрыв, преподаватель химии Бьеррум, даже не поворачивая головы в сторону виновника, сокрушенно говорил: «Это Бор».

Нильс Бор стал физиком и приехал в знаменитую Кавендишскую лабораторию к Томсону. Юноша был вдохновлён тем, что попал в легендарный Кембридж, где работали Ньютон и Дарвин, Максвелл и Рэлей. Но Бор не понравился Томсону: молодой датчанин начал с того, что дал своему новому руководителю оттиск статьи самого Томсона, где Бор тщательно отметил все ошибки корифея физики.

– Плохой старт! – засмеялся Андрей.

– Через год Бор переехал в Манчестер – к Резерфорду, создателю планетарной модели атома. Там ему было гораздо интереснее, чем у Томсона. Бор отнесся к качественной, ещё не получившей математического описания модели атома Резерфорда серьёзнее, чем сам Резерфорд. Бор считал, что на её основе можно создать детальную теорию атома. Сам же Резерфорд, чистый экспериментатор, полагал, что нужно ещё поднакопить экспериментальных данных.

В разгар этих споров и размышлений Бор должен был уехать из Манчестера, потому что в Копенгагене на 1 августа 1912 года была назначена его свадьба с прекрасной девушкой Маргарет. После свадьбы молодожены планировали отправиться в путешествие по Норвегии. Бор решил совместить научные интересы с личными и уговорил Маргарет поехать в свадебное путешествие в Шотландию, по дороге навестив Резерфорда. В результате молодые сначала остановились в Кембридже, где Нильс неделю доделывал статью, а Маргарет писала под диктовку и правила его английский. Затем они отправились в Манчестер, к Резерфорду, и вручили ему плод своего совместного труда. Сотрудники Резерфорда были потрясены тем, что их старый приятель, «простак‑датчанин», отхватил такую красавицу. Лишь после этого молодожены отправились в двухнедельное свадебное путешествие по Шотландии.

 

 

– Все учёные такие… странные? – озадаченно спросила Галатея.

Дзинтара тяжело вздохнула, подняла глаза к потолку, что‑то прикинула в уме и коротко ответила:

– Многие.

Она снова уткнулась в книжку.

– Осенью 1912 года Бор начал работать внештатным преподавателем в Копенгагенском университете. В течение года он написал и опубликовал три статьи, которые стали основой атомной физики и вехой в истории естествознания. Бор соединил не только строение атома и линии Фраунгофера, но и добавил в свою теорию, на первый взгляд совсем далёкую от них, плавную кривую Планка, которая описывала непрерывный спектр звёзд и электролампочек.

– Как он смог? – поразилась Галатея. – Объединить атом Резерфорда, линии Фраунгофера и электроламповую кривую Планка?

– Вообще говоря, этого никто не знает – как учёному приходит в голову гениальная идея, объединяющая столько разнородных физических фактов. Но Бору это удалось: он взял модель атома Резерфорда для водорода, где был всего один электрон, и ввел два существенных отличия планетарной модели атома от реальной Солнечной системы. Одно предположение накладывало запрет на свободное расположение орбит: если в Солнечной системе планеты могут вращаться по любым орбитам, в атоме их набор стал жёстко заданным. Зато второе предположение давало электронам невиданную ранее свободу: если реальные планеты, выбрав в момент рождения какую‑то орбиту, оставались прикованы к ней навечно, то в атоме Бора электроны могли прыгать с орбиты на орбиту, словно птички по жёрдочкам.

– Птички на жёрдочках! – развеселилась Галатея.

– Да, трудно представить, что Юпитер скачет сначала на орбиту Марса, а потом прыгает в гости к Нептуну! – усмехнулся Андрей.

– Верно, способность к перемене орбит стала кардинальным отличием электрона в атоме от реальной планетной системы. Кроме того, Бор предположил, что в случае прыжка с верхней орбиты на нижнюю электрон выпускает порцию энергии в виде света или электромагнитного излучения. Перейти с нижней орбиты на верхнюю электрон может, только поглотив аналогичную порцию внешнего излучения. Частоту этого излучения Бор умножил на постоянную Планка и получил величину, которую счёл разницей в энергии между орбитами. Тем самым он неожиданно для самого себя объяснил существование серий спектральных линий Бальмера и Лаймана и даже вывел формулу Ридберга, выразив константу Ридберга через фундаментальные физические постоянные.

– Ой, для меня это тоже неожиданно! Как же он объяснил существование этих линий? – всполошилась Галатея.

– Представьте себе десяток жёрдочек. Нижняя имеет первый номер, верхняя – десятый. Пусть по этим жёрдочкам прыгают весёлые птички – синички. Каждый прыжок птички вниз дает излучение определённой длины волны – спектральную линию. Чем больше расстояние между жёрдочками, тем больше энергия излучения – и, по формуле Планка, меньше его длина волны. Пусть на жёрдочках с номерами от двух до десяти сидит по птичке. И пусть каждая из них спрыгнет на пустую нижнюю орбиту‑жёрдочку с номером один. Это породит серию ультрафиолетовых линий – серию Лаймана. Если же птички, сидящие на орбитах с третьей по десятую, перескочат не на первую, а на вторую орбиту, энергия излучения будет поменьше – это серия Бальмера из видимого диапазона. А если заставить птичек с орбит четыре‑десять перепрыгнуть на орбиту три, мы получим инфракрасную серию линий Пашена.

 

 

– Вот оно что! Это не планетарная, а синичная модель атома! – прошептала поражённая Галатея.

– Если мимо наших жёрдочек будет пролетать световой квант подходящей энергии, синичка сможет поймать его и перепорхнуть на более высокую жёрдочку. Такие пойманные в атоме кванты света приведут к появлению тёмных линий Фраунгофера на фоне сплошного спектра. Если посмотреть на формулу Ридберга в свете модели атома Бора, то станет понятно, что число N – это номер орбиты, на которую перепрыгивают синички‑электроны, а K – номер орбиты, на которой они сидели раньше. Конечно, число электронных орбит не ограничивается десятью – их бесконечно много, поэтому число К может увеличиваться до бесконечности, но формула Ридберга и правила Бора по‑прежнему будут выполняться.

Интересно, что ещё в начале 1913 года Бор писал Резерфорду и своему другу Хевеши, который был пионером в использовании радиоактивных изотопов в биологических исследованиях, что не занимается вычислением частот наблюдаемых спектральных линий. Но ранней весной 1913 года на глаза Бору попалась книжка, где популярно объяснялись законы спектральных линий и приводилась формула Бальмера. Бора озарило – он понял, что закономерности расположения спектральных линий являются ключом к пониманию атома. Впоследствии он вспоминал, что, как только увидел формулу Бальмера, ему всё стало ясно.

– Вот так просто – увидел и понял? – недоверчиво спросила Галатея.

– Конечно, нет! Нужно долго и упорно думать над проблемой, чтобы она могла быстро решиться внезапным озарением. Новая теория Нильса Бора противоречила классической физике, потому что гласила: на стабильных орбитах электроны не излучают. А теория Максвелла утверждала, что заряженные частицы, двигающиеся по кругу, должны излучать. Бор утверждал: электроны могут испускать и поглощать только определённые порции энергии – световые кванты. Это тоже было странно и необычно для классических физиков, привыкших к непрерывным и ничем не ограниченным процессам. Но Бор знал о квантах Планка и показал, что атом и электронные структуры в нём построены на квантовании энергии. Теория Планка, созданная для свечения электролампочек, отвечала и за самые тонкие внутриатомные процессы.

Резерфорд отнесся к модели Бора с интересом, хотя заметил, что она не лишена противоречий, базируясь одновременно и на квантовой идее Планка, и на классической механике. Профессор написал Бору: «Ваши мысли относительно причин возникновения спектра водорода очень остроумны и представляются хорошо продуманными, однако сочетание идей Планка со старой механикой создает значительные трудности для понимания того, что же всё‑таки является основой такого рассмотрения. Я обнаружил серьёзное затруднение в связи с Вашей гипотезой, в котором Вы, без сомнения, полностью отдаете себе отчёт; оно состоит в следующем: как может знать электрон, с какой частотой он должен колебаться, когда он переходит из одного стационарного состояния в другое? Мне кажется, что Вы вынуждены предположить, что электрон знает заблаговременно, где он собирается остановиться».

Корифеи науки Томсон и Рэлей не приняли новые идеи Бора. Лорд Рэлей высказал такое мнение о работе молодого датчанина: «Я её просмотрел, но не вижу, чем бы она могла быть мне полезна. Не берусь утверждать, что открытия так не делаются. Может быть, и делаются. Но меня это не устраивает». Эйнштейн заявил: «Если всё это правильно, то здесь – конец физики». Тем не менее много позже тот же Эйнштейн напишет, отдавая должное модели Бора: «Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору – человеку с гениальной интуицией и тонким чутьем – найти главнейшие законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это – наивысшая музыкальность в области мысли».

Многие видные учёные, такие как Джинс и Лоренц, сразу заинтересовались новой теорией – уж очень изящно она объяснила спектральные линии водорода и водородоподобных атомов.

– Да, синички на жёрдочках – это красиво! – подтвердила Галатея.

– В середине сентября 1913 года в Англии проходила научная конференция, на которой присутствовали такие корифеи науки, как Томсон, Рэлей, Мария Кюри, Джинс и Лоренц. Дискуссия велась, в основном, вокруг только что опубликованных статей Бора.

Джинс во вступительном докладе отметил: «Доктор Бор пришёл к чрезвычайно остроумному, оригинальному и, можно сказать, убедительному толкованию законов спектральных линий».

В ответ на скепсис аудитории он решительно заявил:

 

«…важным подтверждением правильности этих предположений является тот факт, что они действуют на практике».

 

Интерес к теории Бора ничего не изменил в положении молодого преподавателя. В марте 1914 года Бор с горечью написал своему шведскому другу: «Занимаемая мною должность не предусматривает предоставления мне какой‑либо лаборатории… Мои обязанности сводятся к преподаванию физики студентам‑медикам и не имеют ничего общего с научными исследованиями; у меня нет никакой возможности получить учеников или ассистентов». Бор сообщил, что добивается открытия вакансии преподавателя по теоретической физике, но «факультет постоянно противится учреждению этой должности».

Бор оказался не только гениальным учёным, но и прекрасным организатором. За несколько лет он преодолел консерватизм датских научных кругов, стал профессором физики и добился выделения средств на создание современной лаборатории.

К 1920 году Нильс Бор сумел построить в Копенгагене Институт теоретической физики, который на многие десятилетия стал центром притяжения физиков‑теоретиков и сейчас носит имя учёного. В 1922 году ему дали Нобелевскую премию по физике, а химический элемент номер 107, полученный в 1976 году в Дубне, назвали борием.

У Бора были свои представления о смелости научных теорий. Однажды он сказал знаменитому Паули про его новую теорию, которую тот изложил на семинаре: «Мы все считаем, что ваша теория безумна. Единственно, что нас беспокоит, – достаточно ли она безумна, чтобы быть правильной».

Ландау сказал про Бора: «У него была абсолютная безбоязненность нового, пусть самого невероятного и фантастического на первый взгляд… У него был вечно молодой мозг».

Бор вошел в историю как человек, сумевший проникнуть в главную тайну природы, связать строение крошечного атома и излучение огромных звёзд, перебросить мост между берегом старой классической физики и новой неизвестной землёй – квантовой физикой. По этому мосту устремилась армия молодых учёных, которые за несколько лет создали новую физику. Бурное время создания квантовой картины мира сейчас называют научной революцией.

Хотите узнать, что открыли учёные на новом берегу квантовой механики?

– Да! – воскликнула Галатея.

– Тогда поговорим об этом завтра.

 

Примечания для любопытных

 

Нильс Бор (1885–1962) – гениальный датский физик, один из основателей современной науки. Лауреат Нобелевской премии по физике (1922).

Иоганн Бальмер (1825–1898) – швейцарский математик и физик. В 1885 году вывел формулу, описывающую расположение спектральных линий водорода в видимом диапазоне (серия Бальмера).

Теодор Лайман (1874–1954) – американский физик, вместе с Виктором Шуманом (1841–1913) открывший в 1906 году серию ультрафиолетовых линий водорода (серию Лаймана).

Фридрих Пашен (1865–1947) – немецкий физик, в 1908 году открывший инфракрасную серию линий водорода (серию Пашена).

Иоганн Ридберг (1854–1919) – шведский физик, который вывел общую формулу, описывающую длины волн для всех серий спектральных линий водорода и водородоподобных атомов.

Дьёрдь де Хевеши (1885–1966) – известный венгерский химик, один из открывателей химического элемента гафния. Лауреат Нобелевской премии по химии (1943).

Хендрик Лоренц (1853–1928) – нидерландский физик‑теоретик, лауреат Нобелевской премии по физике (1902), вместе с Питером Зееманом.

Вольфганг Паули (1900–1958) – знаменитый немецкий физик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1945).

Лев Ландау (1908–1968) – знаменитый советский физик‑теоретик. Считал себя учеником Бора, с которым работал в Копенгагене. Лауреат Нобелевской премии по физике (1962).

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.074 с.