Сказка о весёлом физике Гамове и о холодном дыхании горячей Вселенной — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Сказка о весёлом физике Гамове и о холодном дыхании горячей Вселенной

2021-01-29 131
Сказка о весёлом физике Гамове и о холодном дыхании горячей Вселенной 0.00 из 5.00 0 оценок
Заказать работу

 

На следующий день Никки продолжила свои истории:

– Эта история началась в Одессе под артиллерийскую канонаду.

– Сегодня ты не пойдешь в школу – опять стреляют. Как бы десант не высадили… – озабоченно сказал отец сыну.

Георгий Гамов, родившийся в Одессе в 1904 в семье учителя гимназии, выросший во время Первой мировой войны и российской революции, впоследствии вспоминал: «Моё обучение носило спорадический характер, поскольку занятия часто отменялись, когда Одессу обстреливали вражеские корабли или когда греческие, французские, английские экспедиционные войска шли в штыковые атаки по главным улицам города на белые, красные и даже зелёные русские военные силы или когда русские войска различных мастей сражались между собой…»

Георгий увлекался физикой, астрономией и биологией; закончил школу в 1921 году. Одесский университет в те неспокойные годы не мог похвастать высоким уровнем обучения. Гамов решил поступать в Петроградский университет, где, как он слышал, возрождалась физика после застоя в революционные годы. Его отец продал фамильное серебро, чтобы дать сыну деньги на дорогу.

Худой, длинный – ростом выше двух метров – и никогда не унывающий, как истинный одессит, Гамов добрался до хмурого Петрограда и в 1926 году закончил физико‑математический факультет университета. Юноша проявил себя талантливым теоретиком, и его приняли в аспирантуру, а в 1928 году отправили на полугодовую стажировку в Германию к Максу Борну. За эти шесть месяцев Гамов сделал своё первое серьёзное открытие, построив на квантовом принципе неопределённости теорию альфа‑распада атомных ядер.

– Ничего не поняла! – воскликнула Галатея.

Никки объяснила:

– Атомные ядра состоят из положительно заряженных протонов и нейтральных нейтронов. Протоны отталкиваются друг от друга из‑за одинакового электрического заряда, поэтому вроде бы ядро должно распадаться. Но этому препятствуют мощные ядерные силы, которые притягивают ядерные частицы друг к другу. Фактически вокруг ядра атома построена стена, которая не даёт его обитателям «разбежаться». Тем не менее экспериментаторы установили, что тяжёлые атомные ядра могут претерпевать альфа‑распад, то есть выпускать альфа‑частицу, состоящую из двух протонов и двух нейтронов и являющуюся ядром атома гелия. Теоретики не могли понять, как альфа‑частица преодолевает барьер из притягивающих ядерных сил, пробивают эту, на первый взгляд, непреодолимую стену.

– Это так же странно, как если бы спутник на поверхности Земли преодолел земное тяготение и вышел в космос без ракеты‑носителя! – сказал Андрей и вопросительно посмотрел на Никки.

– Очень точное сравнение. Для решения проблемы альфа‑распада Гамов учёл недавнюю работу де Бройля, согласно которой каждая частица является волной. Он показал: так как альфа‑частица одновременно является и волной де Бройля, то она может оказаться снаружи потенциального барьера.

– То есть волна де Бройля может перехлестывать через стену? – уточнил Андрей.

– Верно. Эта работа принесла Гамову известность. Возвращаясь из успешной стажировки в Ленинград, Гамов на один день заехал в Копенгаген – повидаться с легендарным Нильсом Бором. После разговора с молодым учёным Бор предложил ему стипендию на годичное пребывание в своём институте. В результате Гамов пробыл в Европе до весны 1931 года, посетив Лейден, Кембридж и познакомившись со многими выдающимися учёными.

 

 

В Советский Союз Гамов вернулся в сиянии славы: о нём писали советские газеты, ему посвящали стихи. В марте 1932 года учёный, которому на тот момент исполнилось всего 28 лет, был избран членом‑корреспондентом АН СССР. Он навсегда остался в истории самым молодым членом Академии наук.

Гамов стал инициатором создания первого в стране циклотрона – ускорителя элементарных частиц.

В 1931 году он женился на Любе Вохминцевой, выпускнице физмата МГУ.

Одновременно Гамова перестали пускать за границу: европейцы пригласили его на международную конференцию в Рим, но советские власти не разрешили ему выезд.

Уже привыкшему к европейской вольности учёному запрет категорически не понравился, и он стал искать возможность нелегального выезда вместе с женой. Перебрав разные варианты, летом 1932 года супруги Гамовы решили переплыть на лёгкой байдарке Чёрное море – из Крыма в Турцию. Однако сильные волны и встречный ветер помешали этому отчаянно смелому мероприятию. Через два дня шторм пригнал байдарку с измученными путешественниками к крымскому берегу возле Балаклавской бухты.

В 1933 году знаменитые учёные Нильс Бор и Поль Ланжевен пригласили Гамова стать делегатом от СССР на Сольвеевском конгрессе, ему чудом удалось выехать за границу вместе с женой – и он больше не вернулся в Советский Союз, за что в 1938 году был исключён из членов Академии наук. Есть мнение, что именно невозвращение Гамова стало причиной запрета на выезд за границу другим советским учёным, включая Петра Капицу, который в это время работал в Англии под руководством Резерфорда: Капица 13 лет жил в Кембридже вместе с женой Анной и двумя сыновьями, в 1934‑м на какое‑то время вернулся в СССР, и назад его не отпустили.

Впоследствии Пётр Капица стал основателем Института физических проблем и Московского физико‑технического института (МФТИ) – одного из сильнейших университетов мира. В 1937 году он открыл явление сверхтекучести гелия, за что в 1978 году получил Нобелевскую премию по физике. Его сын Сергей тоже стал физиком и профессором МФТИ, а кроме того, в течение 39 лет был телеведущим великолепной научно‑популярной программы «Очевидное – невероятное».

В 1934 году Гамов переехал в столицу США, где возглавил кафедру теоретической физики в Университете Джорджа Вашингтона. Там он подготовил ряд важных научных работ и совершил два дальновидных дела: в 1935 году взял на работу Эдварда Теллера, с которым познакомился в институте Бора, и организовал ежегодную конференцию по теоретической физике, на которую приглашали 20–30 известных физиков.

Выдающийся физик Эдвард Теллер, переехавший в Америку по приглашению Гамова и впоследствии сыгравший ключевую роль в создании атомной и термоядерной бомбы в США, так вспоминал свои годы в Вашингтоне: «Я ценил Гамова. Он генерировал по новой теории каждый день, что делало его подобием какой‑то природной стихии. Но, если теория была бессмыслицей, как в большинстве случаев и оказывалось, можно было сказать об этом Гамову прямо, без околичностей. В отличие от многих гениев, Джо отбрасывал свои теории так же легко, как и создавал. В редких случаях, когда я не мог опровергнуть его идею, мы писали совместную статью. Обычно она была хорошей, потому что Гамов имел отличный вкус в выборе тем».

На конференции Гамова приезжали такие звёзды физики, как Бор, Ферми, Чандрасекар и Бете. В конференции 1938 года, посвящённой астрофизике и ядерным реакциям на Солнце, участвовали Критчфилд – студент Гамова – и уже видный физик Бете. Теллер вспоминал:

 

«В результате конференции Критчфилд сделал верное предположение о реакции между протонами как источнике солнечной энергии… Вскоре после конференции он (Ганс Бете) опубликовал важную работу по обсуждавшимся темам, описывающим роль, которую играет углерод в цикле звёздных термоядерных реакций. Эта работа сыграла существенную роль в Нобелевской премии Ганса».

 

Гамов был знаком с Эйнштейном. Он с юности интересовался общей теорией относительности и даже был учеником А. А. Фридмана до его трагической смерти. Беседы с Эйнштейном способствовали росту интереса Гамова к космологии. Его самым выдающимся научным достижением является горячая модель Вселенной, над которой он начал работать в 1946 году. В 1948 году Гамов ввел понятие Большого взрыва как начала расширения Вселенной в виде горячего облака «улема» – так учёный назвал гипотетическое протовещество из смеси нейтронов, протонов, электронов и квантов света. Он разработал реалистичную схему образования химических элементов во время Большого взрыва.

Гамов придерживался простой и элегантной схемы динамики Вселенной, включающей предыдущий цикл сжатия. В своей книге «Создание Вселенной» он писал:

 

«Мы можем задать себе два важных вопроса: почему наша Вселенная была в таком сильно сжатом состоянии и почему она стала расширяться? Простейший и математически наиболее корректный ответ состоит в том, что Большое сжатие, которое имело место в ранней истории нашей Вселенной, было результатом коллапса, который случился в ещё более раннюю эру, и что нынешнее расширение есть просто „упругий“ отскок, который начался, как только максимально возможная плотность была достигнута».

 

Концепция Вселенной, расширяющейся после сильного сжатия, безупречно красива, но механизм «упругого отскока» во времена Гамова был совершенно непонятен. Высказать соображение о таком отскоке до нахождения его реального механизма мог лишь такой смелый человек, каким был Гамов.

Роль яркой личности Гамова в космологии лучше всего характеризует знаменитый физик, нобелевский лауреат Альвен, известный противник теории Большого взрыва. С заметной досадой он отметил в своей книге «Космическая плазма»: «Эта „космология большого взрыва“ стала к настоящему времени общепринятой в основном благодаря энергичному характеру самого Гамова».

Некоторые учёные отвергали идею взрывного образования Вселенной, считая, что наблюдательный факт расширения Вселенной вовсе не означает того, что Вселенная раньше была маленьким и плотным объектом, впоследствии взорвавшимся. В том же 1948 году американские учёные Бонди и Голд выдвинули космологическую теорию, которая предполагала стационарное расширение Вселенной при постоянном равномерном возникновении материи без каких‑либо взрывов (причина такого творения материи не указывалась).

Активным соавтором и пропагандистом этой теории был англичанин Фред Хойл, написавший в 1950 году, что наблюдаемое расширение Вселенной можно обеспечить, предполагая постоянное создание каким‑то образом одного атома водорода в год в объеме «небоскрёба средних размеров». Интересно, что именно Хойлу принадлежит честь введения термина «Большой взрыв», хотя он использовал его с иронией и в отрицательном смысле: «Эта идея большого взрыва выглядит для меня неприемлемой…»

Теория Бонди‑Голда потеряла своих сторонников после накопления новых наблюдательных данных, свидетельствовавших в пользу взрывного образования Вселенной, а броский термин «Большой взрыв» потерял ироничный оттенок.

Развивая теорию Большого взрыва, в 1948 году Гамов вместе со своим студентом Альфером и молодым учёным Херманом предсказал существование теплового излучения, оставшегося после остывания молодой и горячей Вселенной.

– А почему оно должно существовать? – спросила недоверчивая Галатея.

– Взрыв, породивший Вселенную, сопровождался вспышкой мощного электромагнитного излучения самых коротких длин волн. Это было очень горячее облако излучения – или облако излучения очень горячего тела – самой Вселенной. По мере своего расширения это облако остывало, а Вселенная превращалась в практически пустое тёмное место с островами из звёзд. Спустя миллиарды лет после Большого взрыва его тепловое эхо очень сильно остыло, и его стали называть «реликтовым», то есть «оставшимся от прошлых времён». Согласно оценкам Гамова, Альфера и Хермана, оно должно быть аналогично излучению чёрного тела с температурой всего в несколько градусов Кельвина.

Галатея задала уточняющий вопрос:

– То есть сейчас Вселенная светится как лампочка Планка, но очень холодная?

– Да. В 1950 году в популярной статье в «Физика сегодня» («Physics Today») Гамов назвал цифру в 3 градуса Кельвина, сделав тем самым необычайно точное предсказание.

Известный физик Стивен Вайнберг написал в своей знаменитой книге «Первые три минуты. Современный взгляд на происхождение Вселенной»: «Гамов, Альфер и Херман заслуживают колоссального уважения, помимо всего прочего, за то, что они серьёзно захотели воспринять раннюю Вселенную и исследовали то, что должны сказать известные физические законы о первых трёх минутах».

 

 

Джон Мазер, нобелевский лауреат 2006 года, получивший премию за исследования реликтового излучения, подробно обсуждает труды группы Гамова в книге «Самый первый свет», написанной вместе с Бослоу.

Во‑первых, он отмечает его популярные книги:

 

«В 40‑х годах Гамов, живя в Соединенных Штатах, стал хорошо известным за его популярные книги по физике и астрономии, такие как „Мистер Томпкинс в Стране Чудес“, „Раз, два, три… бесконечность“ – книги, которые вдохновили многих юных, включая меня, стать астрономами и физиками».

 

Во‑вторых, он говорит о том, что Гамов, Альфер и Херман были реальными кандидатами на Нобелевскую премию за предсказание реликтового излучения и оценку его температуры, и детально обсуждает, почему этого не произошло.

Никки отметила:

– Я специально изучала историю открытия реликтовых излучений, потому что меня очень интересует реликтовое гравитационное излучение, таящее немало загадок. Жаль, что группа Гамова не получила заслуженного признания за вклад в изучение древнейшего света Вселенной. Одной из причин этого была репутация Гамова, неутомимого шутника и любителя розыгрышей, далеко не всегда безобидных. Так, написав со своим студентом Альфером статью, он ради шутки вставил соавтором и физика Бете, чтобы первые буквы фамилий дали последовательность первых букв греческого алфавита: Альфер, Бете, Гамов. Более того, он уговаривал Хермана сменить фамилию на Дельтер и стать четвертым в статье, но тот почему‑то наотрез отказался…

Когда Гамова избрали членом Американской академии наук, он прислал в журнал академии научную статью по биологии, соавтором которой указал мистера Томпкинса – юмористического персонажа своих научно‑популярных книг. Академия под благовидным предлогом отклонила статью – кстати весьма интересную, вполне нобелевского уровня. Тогда Гамов убрал из соавторов вымышленного Томпкинса и опубликовал статью в докладах Датской академии наук, членом которой он тоже являлся.

В этой статье учёный обнародовал ещё одно яркое открытие: идею генетического кода, выдвинутую им в 1954 году. В то время было известно, что белки состоят из двадцати типов аминокислотных остатков, последовательность которых в длинной белковой цепи определяется ДНК или молекулой дезоксирибонуклеиновой кислоты – носителем генетической информации, тоже представляющей длинную цепь, но лишь из четырёх типов нуклеотидных остатков. Гамов предположил, что клетка использует генетический код, переводящий четырёхбуквенный текст ДНК в двадцатибуквенный текст белка. Согласно его гипотезе, этот код должен быть триплетным – набор из трёх разных соседних нуклеотидов на цепи ДНК определит какую‑то аминокислоту белка.

– Караул! – закричала Галатея. – Я тону в нуклеотидах и аминокислотах!

Вмешалась биолог Дзинтара:

– Сейчас объясню. Все живые организмы сконструированы из множества белков различной структуры и назначения. Но все белки состоят из 20 типов аминокислотных остатков.

– Аналогия: толстые книги написаны при использовании всего тридцати трёх букв! – Андрей захотел помочь сестре в понимании генетики.

– Верно. В 1953 году Уотсон и Крик показали, что наследственная информация содержится в ДНК – молекуле, которая, несмотря на свою колоссальную длину, состоит всего из четырёх типов кирпичиков‑нуклеотидов.

– Это была зашифрованная книга, в которой использовали всего четыре буквы! – снова помог Андрей.

– Гамов быстро понял, что должен существовать некий код, способ задания 20‑ти аминокислотных остатков с помощью 4‑х нуклеотидов.

– Он понял, что нужен словарик для перевода слов с одного, четырёхбуквенного, языка на другой, двадцатибуквенный!

– Не совсем. Мне нравится твоя книжная аналогия, но во времена Гамова никто не мог прочесть эти генетические книги, и вопрос о переводе ещё не стоял. Пока сопоставлялись два алфавита. Представим, что нам в руки попали две шифрованные книги, написанные с помощью разного алфавита, и мы знаем, что из четырёхбуквенного текста как‑то можно получить двадцатибуквенный. Но как именно? Если бы один аминокислотный остаток в белке соответствовал одному типу нуклеотида в ДНК, тогда ДНК со своей четвёркой нуклеотидов могла бы программировать всего четыре аминокислотных остатка, а не два десятка. Если предположить, что каждый аминокислотный остаток кодируется парой из двух нуклеотидов, то получилось бы 16 возможных вариантов. Гамов предположил, что каждый аминокислотный остаток определяется триплетом из трёх нуклеотидов. Значит, получаем 64 комбинации нуклеотидных троек – их с лихвой хватит на 20 аминокислотных остатков. Таким образом, Гамов предложил «словарик» для перевода букв одного неизвестного языка в буквы другого неизвестного языка. Четвёрку нуклеотидов ДНК обозначают буквами А, Г, Ц, Т. Тройке нуклеотидов ЦАГ соответствует аминокислота глутамин, а триплету ААГ – аминокислота лизин. Именно так четырёхбуквенная ДНК программирует размещение двадцати аминокислот в белковой цепи.

– Сейчас понятно! – кивнула Галатея матери.

Никки продолжила:

– Важной макромолекулой – посредником между ДНК и белками является РНК, или рибонуклеиновая кислота. Гамов создал полушутливый «РНК‑клуб» из двадцати (по числу известных тогда аминокислот) видных биологов и физиков, которые работали в генетике. Отличительным признаком члена РНК‑клуба был специально изготовленный галстук с рисунком РНК и булавкой. Впоследствии гипотеза Гамова подтвердилась – в октябре 1968 года учёные Холли, Корана и Ниренберг получили Нобелевскую премию за установление генетического кода.

– То есть они установили, каким комбинациям из трёх нуклеотидов соответствуют двадцать аминокислотных остатков? – спросил Андрей.

– Верно. К сожалению, Гамов умер в августе 1968 года, за два месяца до присуждения Нобелевской премии за расшифровку кода. Один из открывателей спиральной структуры ДНК, нобелевский лауреат Дж. Уотсон, написал в 2001 году книгу о событиях тех лет под названием «Гены, девушки и Гамов. После двойной спирали». В ней он отметил роль Гамова в расшифровке механизма наследственности и привёл фотокопии писем учёного, написанные Крику и ему самому в 1960‑х годах.

Известный астрофизик Иосиф Шкловский заявил:

 

«Я считаю Г. А. Гамова одним из крупнейших русских физиков XX века. В конце концов, от учёного остаются только конкретные результаты его труда. Применяя футбольную аналогию, имеют реальное значение не изящные финты и дриблинг, а забитые голы. В этом сказывается жестокость науки. Гамов обессмертил своё имя тремя выдающимися „голами“: 1) Теория альфа‑распада, более обще – „подбарьерных процессов“ (1928 г.), 2) Теория „горячей Вселенной“ и как следствие её – предсказание реликтового излучения (1948 г.), обнаружение которого в 1965 году ознаменовало собой новый этап в космологии, и 3) Открытие феномена генетического кода (1953 г.) – фундамента современной биологии».

 

Гамов не получил Нобелевскую премию ни за одно из своих великих открытий, и многие учёные считают это несправедливым.

В перечень «нобелевских» достижений Гамова можно добавить и гипотезу о том, что Большой взрыв – результат предыдущего Большого коллапса, а нынешнее расширение Вселенной является своеобразным упругим отскоком после достижения максимального сжатия.

Эта гипотеза не получила достаточного теоретического и наблюдательного подтверждения, но, возможно, именно в этом направлении будет разгадана главная тайна образования нашего мира.

Гамов доказал, что астрофизики могут определить не только химический состав звёзд, но и химический состав самой Вселенной, а также заглянуть в первые минуты существования нашего мира. Никто раньше так смело не брался за решение этих сложных вопросов.

Если не считать премию Калинги за популяризацию науки, выдающийся учёный Гамов не получил никаких премий и наград за свои научные работы. Но о ком ещё писали книги нобелевские лауреаты?

Людмила Карачкина, астроном Крымской астрофизической обсерватории и знаменитый открыватель астероидов, назвала в честь учёного астероид номер 8816 (Гамов), который она обнаружила 17 декабря 1984 года.

Это название было официально принято Международным астрономическим союзом. Обоснование было следующее: «Назван в память об учёном Георгии Гамове (1904–1968). Его главные научные достижения включают создание теории альфа– и бета‑распада и теорию взрывающейся Вселенной. Гамов был также первым в расшифровке генетического кода. Он работал в институтах по всему миру: в Одессе, Ленинграде, Геттингене, Копенгагене, Кембридже и в США. С помощью своих популярных лекций, статей и книг он способствовал подъёму общественного интереса к науке. В 1956 году он получил от ЮНЕСКО премию Калинги за популяризацию науки. Имя было предложено С. П. Капицей и поддержано открывателем».

Людмила Карачкина уточнила впоследствии, что предложение назвать астероид в честь Гамова было выдвинуто всей семьёй Сергея Капицы, включая Анну Алексеевну, супругу Петра Леонидовича Капицы.

Гамов стал легендой. Писатель Александр Иличевский, выпускник Московского физико‑технического института, вспоминает на станицах журнала «Новый мир»:

 

«В юности для нас, студентов МФТИ, фигура Гамова была овеяна ореолом дерзновенной смелости: как и положено для того, кто рискнул жизнью не столько ради свободы, сколько ради добычи заветного руна. Мы знали, что Ландау сидел в тюрьме и из лап Берии его вытаскивал Капица. Мы знали, что Сахаров штудировал монографию Гейтлера на нарах в теплушке, по дороге в эвакуацию. Но прорыв Гамова на байдарке с любимой девушкой за горизонт, а потом и в будущее науки – был вне конкуренции. И остаётся таковым и сейчас».

 

 

Примечания для любопытных

 

Георгий Антонович Гамов (1904–1968) – выдающийся физик‑теоретик, работавший в России, Европе и США. Стал самым молодым в истории членом‑корреспондентом АН СССР и России: избран в Академию наук в возрасте 28 лет. Автор ярких работ в области квантовой теории, космологии и биологии. Известный популяризатор науки.

Эдвард Теллер (1908–2003) – знаменитый американский физик венгерского происхождения. Один из создателей ядерного оружия в США.

Ганс Бете (1906–2005) – известный американский физик германского происхождения. Лауреат Нобелевской премии по физике (1967) за работы по термоядерным реакциям на звёздах.

Поль Ланжевен (1872–1946) – выдающийся французский физик, ученик Пьера Кюри.

Энрико Ферми (1901–1954) – выдающийся итальянский физик, один из создателей первого атомного реактора в США. Лауреат Нобелевской премии по физике (1938).

Субраманьян Чандрасекар (1910–1995) – известный американский астрофизик и физик‑теоретик тамильского происхождения. Лауреат Нобелевской премии по физике (1983).

Ханнес Альвен (1908–1995) – известный шведский физик и астрофизик. Лауреат Нобелевской премии (1970) за работы в области магнитогидродинамики.

Александр Александрович Фридман (1888–1925) – выдающийся физик, основатель современной космологии. Решил уравнение Эйнштейна и показал, что наша Вселенная не стационарна и расширяется.

Герман Бонди (1919–2005) – известный американский астроном, соавтор теории стационарной Вселенной, согласно которой Вселенная расширяется без начального взрыва, а вещество в ней всё время рождается по неизвестной пока причине.

Томас Голд (1920–2004) – известный американский астроном, соавтор теории стационарной Вселенной.

Фред Хойл (1915–2001) – известный британский физик‑теоретик, автор нескольких научно‑фантастических романов. Автор термина «Большой взрыв» и соавтор теории стационарной Вселенной, которой в середине XX века придерживалась половина космологов.

Ральф Альфер (1921–2007) – известный американский физик‑теоретик, ученик Гамова. Соавтор предсказания реликтового излучения и его температуры.

Роберт Херман (1914–1997) – известный американский физик‑теоретик. Соавтор Гамова и Альфера по статьям, предсказывающим существование реликтового излучения с температурой в несколько градусов Кельвина.

Стивен Вайнберг (р. 1933) – известный американский физик‑теоретик. Лауреат Нобелевской премии по физике (1979), вместе с Шелдоном Ли Глэшоу и Абдусом Саламом.

ДНК (дезоксирибонуклеиновая кислота) – макромолекулы, обеспечивающие хранение, передачу и реализацию генетической информации в живых организмах.

РНК (рибонуклеиновая кислота) – макромолекулы, которые участвуют в кодировании генетической информации и программировании синтеза белков и являются посредниками в передаче информации от ДНК к белкам.

Джеймс Уотсон (р. 1928) – знаменитый биолог, вместе с Фрэнсисом Криком (1916–2004) соавтор открытия в 1953 году структуры ДНК и лауреат Нобелевской премии по физиологии и медицине (1962).

Пётр Леонидович Капица (1894–1984) – знаменитый учёный, работавший в России и Англии. Лауреат Нобелевской премии по физике (1978).

Сергей Петрович Капица (1928–2012) – известный советский физик, профессор МФТИ, ведущий знаменитой научно‑популярной телепередачи «Очевидное – невероятное». Лауреат Государственной премии СССР (1980). Сын П. Л. Капицы.

Роберт Холли (1922–1993) – известный американский биохимик. Вместе с Харом Корана и Маршаллом Ниренбергом лауреат Нобелевской премии по физиологии и медицине (1968) «за расшифровку генетического кода».

Хар Корана (1922–2011) – известный американский и индийский биолог. Вместе с Робертом Холли и Маршаллом Ниренбергом лауреат Нобелевской премии по физиологии и медицине (1968) «за расшифровку генетического кода».

Маршалл Ниренберг (1927–2010) – известный американский биохимик и генетик. Вместе с Харом Корана и Робертом Холли лауреат Нобелевской премии по физиологии и медицине (1968) «за расшифровку генетического кода».

Людмила Георгиевна Карачкина (р. 1948) – известный крымский астроном, открыватель 130 новых астероидов. Назвала три астероида в честь Георгия Гамова, Петра Капицы и Сергея Капицы.

 


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.059 с.