Роль стрессосом как факторов выживания микроорганизмов — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Роль стрессосом как факторов выживания микроорганизмов

2020-04-01 71
Роль стрессосом как факторов выживания микроорганизмов 0.00 из 5.00 0 оценок
Заказать работу

 

О кризисных явлениях в окружающей среде большинству бактерий сигналит особый центр. Этот центр чаще всего является крупной молекулой и назван «стрессосомой». Как правило, бактерия имеет в своём составе около 20 стрессомом, и, хотя ученые знают, что они играют важную роль в генерации клеточного ответа на стрессовые ситуации, сложности в этом процессе не были полностью изучены до сих пор, о кризисных явлениях в окружающей среде большинству бактерий сигналит особый центр. Этот центр чаще всего является крупной молекулой и назван «стрессосомой». Как правило, бактерия имеет в своём составе около 20 стрессомом. Бактерия оказывается в опасной ситуации, например, если температура и соленость среды достигают своего опасного уровня. В таком случае сигнал передается с поверхности клетки внутрь, предупреждая бактерию об угрозе выживанию.

Используя последние достижения электронной микроскопии авторы исследования, результаты которого были опубликованы в журнале Science, отмечают, что стрессосомы, получая сигнал опасности, формируют ответ в виде отделения нескольких белков. Эта белковая структура провоцирует серию сигналов внутри клетки, позволяющих ей адаптироваться и выжить в новой среде.

Стрессосомы клетки являются важнейшими элементами для защиты клетки, поскольку они позволяют очень быстро реагировать на опасность. Цепные реакции, происходящие в результате их активации, позволяют бактерии адаптироваться к изменениям в её окружающей среде почти мгновенно. Каскад событий внутри бактериальной клетки, который возникает вследствие сигнала стрессосомы, заставляет конкретные гены внутри клетки усиливать процесс трансляции. Это означает, что некоторые гены внутри клетки включаются в момент опасности и вызывают увеличение количества определённых белков. Именно такие изменения в клетке позволяют ей выживать во враждебных ей условиях (Марлз Дж., Грант Т., 2008).


 

ЗАКЛЮЧЕНИЕ:

 

Таким образом, в завершение данного курсового проекта, можно подвести обобщающие выводы.

Были рассмотрены причины, по которым одни микроорганизмы способны размножаться при пониженных температурах, а другие даже нуждаются в таких условиях. Модификация мембранных липидов, а следовательно, и изменения в функционировании мембран представляют собой важный аспект температурной адаптации. Этот аспект особенно интересен в свете рассмотрения форм жизни, которые могли бы существовать на гигантских планетах, где условия, более или менее приемлемые для жизни, возможны лишь в газообразных областях.

Способность некоторых микроорганизмов жить при высоких температурах уже давно привлекла внимание биологов. Температурная адаптация микроорганизмов обусловлена изменениями в скоростях метаболизма, а также в структуре мембран, рибосом и отдельных белков. Наиболее важными для адаптации к высоким температурам являются изменения в структуре белков. При тех высоких температурах, при которых растут термофилы, многие их ферменты сохраняют как активность, так и регуляторные свойства.

Многие микроорганизмы способны размножаться в интервале значений рН, в котором их внутриклеточные ферменты не функционируют. Микроорганизмы могут существовать при концентрациях водородных ионов, различающихся на несколько порядков; отдельные микроорганизмы растут при рН 10 и даже при более высоких. Несмотря на то что рН окружающей среды может меняться, внутри своих клеток эти организмы поддерживают постоянную кислотность. Структуры на поверхности клеток у таких организмов должны быть приспособлены к крайним значениям рН.

Экстремальные галофилы занимают особое место среди микроорганизмов, существующих в экстремальных условиях, поскольку они представляют собой пример полной (и внешней, и внутренней) адаптации к очень высоким концентрациям солей, а также потому, что они обладают уникальными биохимическими свойствами. С недавних пор стало ясно, что организмы, живущие при высоких концентрациях растворенных веществ или способные размножаться в широком диапазоне концентраций, представляют собой крайне увлекательный объект исследования.

Многие микроорганизмы сохраняют жизнеспособность в течение долгого времени в отсутствие воды и начинают размножаться, как только она снова становится доступна для них. Хотя для своего размножения микроорганизмы нуждаются в определенном уровне содержания воды, она не требуется им для выживания.

Токсичность тяжелых металлов представляет собой проблему скорее для человека, чем для микроорганизмов, которые научились по-разному приспосабливаться к таким веществам. Микроорганизмы способны осуществлять трансформацию тяжелых металлов в окружающей среде: выщелачивать металлы из руд в кислых рудничных стоках, изменять валентность металлов, как, например, при трансформации ртути в более или менее токсичные формы, а также при образовании таких особых форм скоплений металлов, как марганцевые конкреции.

Микроорганизмы сильно отличаются друг от друга по своей устойчивости к радиации. Многие из них способны выдерживать дозы радиации, летальные для других форм жизни. Подобная устойчивость вызвана рядом факторов, наиболее важным из которых представляется способность микроорганизмов к репарации их ДНК, поврежденных облучением. Многообразие способов, при помощи которых микроорганизмы противостоят радиации, может сделать их последними обитателями на Земле или, напротив, первыми поселенцами на Земле, разрушенной атомной войной.


 

СПИСОК ЛИТЕРАТУРЫ

 

1. Асонов Н.Р. Микробиология / Н.Р. Асонов. – М.: Колос, 1980. – 312 с.

2. Камшилов М. М. Эволюция биосферы / М.М. Камшилов. - М.: Наука, 1974. - 254 с.

3. Кашнер Д. Жизнь микробов в экстремальных условиях. Пер. с англ. / Д. Кашнер. – М.: Мир, 1981. – 511 с.

4. Логинова Л.Г. Новые формы термофильных бактерий / Л.Г. Логинова, Л.А. Егорова. - М.: Наука, 1977. - 175 с.

5. Лях С.П. Адаптация микроорганизмов к низким температурам / С.П. Лях. - М.: Наука, 1976. – 160 с.

6. Марлз Дж., Грант Т., Делюмье О. Молекулярное строение стрессосом // Science, 2008. №3 C. 92 – 96

7. Радчук Н.А. Ветеринарная микробиология и иммунология / Н.А. Радчук, Г.В. Дунаев, Н.М.Колычев и др. – М.: Агропромиздат, 1991. – 383 с.

8. Покровский В.И. Микробиология / В.И. Покровский, О.Н. Поздеев. – М.: ГЭОТАР, 1999. – 1200с.

9. Бухарин О.В. Механизмы выживания бактерий / Бухарин О.В., Гинцбург А.Л., Романова Ю.М. и др. - М.: Медицина, 2005. – 367 с.

10. Заварзин Г.А. Природоведческая микробиология / Заварзин Г.А., Колотилова Н.Н. – М.: Книжный дом «Университет», 2001. – 256 с.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.