Механизмы выживания бактерий в окружающей среде — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Механизмы выживания бактерий в окружающей среде

2020-04-01 138
Механизмы выживания бактерий в окружающей среде 0.00 из 5.00 0 оценок
Заказать работу

Механизмы выживания бактерий в окружающей среде

Работу выполнил:

студент III курса

специальности «Микробиология»

Акжигитов Абай Сарсенгалиевич

 

Научный руководитель:

доцент кафедры

Киргизова Светлана Борисовна

 

Оренбург – 2010


Содержание работы:

 

Введение

1. Механизмы выживания бактерий при низких температурах

2. Механизмы выживания бактерий при высоких температурах

2.1 Молекулярные механизмы термофилии

2.1.1 Особенность липидов и мембран

2.1.2 Термостабильность макромолекул

3. Механизмы выживания бактерий при экстремальных значениях рН

3.1 Основные механизмы выживания

4. Жизнь бактерий при высоких концентрациях солей, растворенных веществ и в условиях недостатка воды

5. Реакции бактерий на тяжелые металлы и токсичные вещества окружающей среде

6. Жизнь микроорганизмов в условиях интенсивного облучения

6.1 Защитные механизмы

6.1.1 Механизмы репарации ДНК

6.1.2 Механизмы резистентности Micrococcus radiodurans

7. Роль стрессосом как факторов выживания микроорганизмов

Заключение

Список литературы


 

ВВЕДЕНИЕ

 

Выяснение причин того, каким образом бактерии адаптируются к различным условиям окружающей среды, имеет очень важное значение для науки. Информация об этих процессах дала бы понимание основных механизмов выживания некоторых из наиболее устойчивых организмов на Земле. Разнообразные группы бактерий могут развиваться в условиях, не доступных, для других организмов.

Огромному разнообразию условий, представляемых биосферой бактериям, соответствует разнообразие их свойств и адаптаций. Обладая огромной численностью популяций и выработанными эволюцией механизмами изменчивости и диффузии генетических детерминаций, большинство бактериальных видов находится в состоянии постоянного адаптационного движения в соответствии с постоянно изменяющимися условиями среды. Бактерии обладают весьма сложными и совершенными механизмами молекулярных адаптаций, о существовании которых еще относительно недавно нельзя было даже предположить.

Если рассматривать жизнь в окружающей среде, то очевидно, что природа может быть весьма враждебной, и что организмам приходится бороться за жизнь. Давно известно, что жизнь встречается в самых суровых условиях: в горячих источниках, которые нередко отличаются повышенной кислотностью; в соленых озерах и солеварнях; в источниках с повышенной кислотностью (например, в рудничных стоках), которые могут содержать также токсичные тяжелые металлы в высоких концентрациях; на сухих поверхностях скал и в пустынях; при температурах около точки замерзания воды и даже ниже ее.

Большой интерес к адаптации микроорганизмов к разнообразным условиям окружающей среды был вызван и долгое время поддерживался поисками жизни на других планетах. Ведь зная границы жизни на Земле, можно составить представление о физических и химических пределах, в которых жизнь могла возникнуть не только на нашей, но и на других планетах.

Изучение механизмов выживания бактерий также имеет очень важное значение для медицины, ветеринарии, фармакологии. Устойчивость микроорганизмов к различным факторам среды ставит вопрос о специальных, новых методах стерилизации и хранения продуктов, что играет важнейшую роль для пищевой промышленности. Таким образом, тема данной курсовой работы является весьма актуальной в настоящее время.

В данной курсовой работе речь будет идти об условиях окружающей среды, в границах которых способны существовать микроорганизмы, а также о механизмах, при помощи которых они выживают в этих условиях.

Цель работы: исследование молекулярных и морфологических механизмов выживания бактерий в различных условиях окружающей среды.

Предмет исследования: бактериальные микроорганизмы и механизмы их выживания.

Основные задачи:

1) изучить механизмы выживания бактерий в условиях низких и высоких температур;

2) рассмотреть механизмы выживания бактерий при экстремальных значениях рН;

3) дать описание механизмов выживания бактерий при высоких концентрациях солей и растворенных веществ;

4) описать защитные реакции бактерий на действие тяжелых металлов и токсичных веществ в окружающей среде;

5) подробно рассмотреть механизмы выживания бактерий в условиях интенсивного облучения;

6) сделать общее заключение по теме курсовой работы.


 

Защитные механизмы

 

Одним из универсальных механизмов адаптации к световому излучению высокой интенсивности и защиты от токсичных форм фотосенсибилизированного кислорода является синтез каротиноидных пигментов. Характерным примером может служить яркая окраска микроорганизмов, живущих в условиях высокой освещенности (в воздухе, на поверхности скал, обнажений горных пород, в высокогорье и т.д.) (Заварзин Г.А., 2001).

Ранние исследования радиационной резистентности были направлены в первую очередь на поиски внутриклеточных веществ, защищающих организм от повреждений. В настоящее время внимание исследователей концентрируется в основном на механизмах, тем или иным способом исправляющих повреждения в ДНК, индуцируемые облучением. Эти механизмы имеют важное значение. Тем не менее представляется вероятным, что определенную вспомогательную роль играют и защитные механизмы.

Для радиорезистентных организмов обычно характерна усиленная пигментация, что чаще всего является причиной резистентности. Пигменты действуют как «энергетические ловушки», препятствующие радиации или ее продуктам достигать ДНК или любых других жизненно важных мишеней.

Резистентность может быть обусловлена также присутствием определенных продуктов метаболизма (внутриклеточных радиопротекторов). Так, Е. coli более резистентна при облучении в присутствии экстрактов из М. radiodurans, чем при облучении в буферном растворе. Защитное действие экстрактов из М. r аdiodu r ans связано с уменьшением выхода радикалов при участии механизма, аналогичного тому, который действует в отношении известных химических веществ-протекторов.

 Своеобразный метаболизм серосодержащих аминокислот у М. radiodurans позволяет думать, что эти аминокислоты выполняют роль сульфгидрильных веществ-протекторов. Зависимость радиорезистентности от концентрации экстракта имеет двухкомпонентный характер: в низких концентрациях он оказывает на тест-организм сенсибилизирующее действие, а в высоких концентрациях — защитное.

Радиорезистентность может определяться уровнем каталазной активности в. клетке. Было показано, что для некоторых бактерий с повышенной радиорезистентностью характерно высокое содержание каталазы.

С возрастанием радиорезистентности увеличивается длина клеток: значительная часть клеток наиболее резистентных штаммов была в 30—40 раз длиннее нормальных. У клеток этих штаммов наблюдалось также своеобразное явление почкования. У резистентных штаммов, упомянутых выше, удлинение клеток было устойчивым признаком, наблюдавшимся в течение трех лет.

К важным факторам, от которых зависит реакция той или иной клеточной системы на любой физический или химический агент, относится состав клеточной стенки. В случае химических мутагенов структура клеточной стенки может определять ее проницаемость, влияя, таким образом, на чувствительность клетки к данному агенту. Хотя структура клеточной стенки не оказывает влияния на проникающую способность ионизирующего излучения, она тем не менее может иметь значение для радиорезистентности микроба. Например, вполне вероятно, что какой-либо связанный с мембраной ферментный комплекс, освобождающийся или активируемый под действием радиации, играет определенную роль в системе (системах) репарации или обусловливает конечную инактивацию клетки. Ионизирующее излучение вызывает освобождение связанной с клеточной поверхностью экзонуклеазы у М. radiodurans. При облучении в дозе 400 крад, сублетальной для этого организма, в клетках остается только 10% фермента, причем степень освобождения фермента зависит от дозы облучения.

Микробы-сапрофиты более устойчивы у световому излучению в сравнении с патогенными. Это объясняется тем, что они чаще подвергаются действию прямых солнечных лучей, поэтому являются более адаптированными (Радчук Н.А., Дунаев Г.В., 1991).

Увеличение содержания ДНК в клетке служит одним из факторов ее радиорезистентности. Это может быть обусловлено либо увеличением числа нуклеоидов в клетке, либо ее полиплоидностью. Нитевидная форма резистентных клеток Е. coli позволяет предполагать, что в них реализуется первый механизм. Но содержание ДНК в клетках этих штаммов практически не отличается от такового в клетках дикого типа.

Определение содержания GC-nap в ДНК восьми видов бактерий показало, что существует обратная зависимость между GC-содержанием и резистентностью клеток к рентгеновским лучам. В то же время между GC-содержанием и резистентностью к УФ-облучению наблюдается прямая зависимость. Такая корреляция утрачивает какой бы то ни было смысл в случае М. radiodurans, резистентного к обоим типам излучения; однако она может иметь некоторое значение при отсутствии у бактерий эффективных систем репарации. Действительно, ДНК М. radiodurans характеризуется тем же нуклеотидным составом, что и ДНК штаммов Pseudomonas, исключительно чувствительных к ионизирующей радиации (Покровский В.И., 1999).

 

Механизмы репарации ДНК

В основе радиорезистентности бактерий лежат разнообразные внутриклеточные процессы, участвующие в репарации поврежденной ДНК. Большую ценность для исследования этих процессов представляет наличие хорошо охарактеризованных мутантных штаммов, радиационная чувствительность которых варьирует в чрезвычайно широких пределах.

При помощи генетических скрещиваний были получены двойные и тройные мутанты дрожжей, у которых репаративная активность полностью отсутствует. Сравнительное исследование штамма дикого типа и сверхчувствительных двойных и тройных мутантов S. сеrevisiae показало, что если нормальный штамм довольно легко переносит образование в ДНК почти 16 000 димеров (37% выживания), то двойные и тройные мутанты остаются резистентными в присутствии не более 50 и 1 димера соответственно. Пониженная резистентность таких двойных и тройных мутантов служит убедительным свидетельством в пользу существования различных путей репарации радиационных повреждений.

В зависимости от того, участвует ли видимый свет в модификации повреждений ДНК, репарацию можно подразделить на световую и темновую. Конкретно под световой репарацией понимается феномен фотореактивации, впервые описанный у актиномицетов. Механизм фотореактивации действует только на пиримидиновые димеры. В этом процессе участвует фермент фотореактивации, который связывается с димерами. Образующийся фермент-субстратный комплекс активируется видимым светом, что приводит к мономеризации димеров in situ. Таким образом, летальный эффект УФ-облучения существенно снижается, если облученные клетки подвергаются затем воздействию видимого света с длинами волн от 360 до 420 нм (см. рис. 6.1).

 

Рис. 6.1 Световая репарация ДНК

 

Фотореактивация служит мощным инструментом исследования летальных и мутационных повреждений, так как их репарация под влиянием света может быть использована в качестве критерия для решения вопроса о том, обусловлена ли инактивация ДНК образованием пиримидиновых димеров.

К другому типу реактивации клеток видимым светом относится его защитное действие. В этом случае увеличение выживаемости клеток наблюдается при освещении их видимым светом перед УФ-облучением. Этот феномен объясняют тем, что видимый свет индуцирует задержку клеточного деления. В результате такой задержки остается больше времени для репарации повреждений, вызываемых УФ-облучением (см. рис. 6.2).

Рис. 6.2 Зависимость выживания клеток бактерий от величины облучения

 

Под «темновой репарацией» понимают репарацию без участия света. В настоящее время известны две системы такого типа: эксцизионная репарация и пострепликативная рекомбинационная репарация. Репарация первого типа требует присутствия ферментов, которые узнают нарушения структуры ДНК, удаляют затронутые участки, замещая их нормальными нуклеотидными последовательностями, и, наконец, восстанавливают первоначальную структуру ДНК, замыкая полинуклеотидную цепь (см. рис. 6.3).

 

Рис. 6.3Темновая репарация ДНК

Действие разнообразных инактивирующих агентов на клетки может приводить к возникновению в ДНК целого ряда различных повреждений. Детальное изучение системы эксцизионной репарации стало возможным благодаря наличию радиационно-чувствительных мутантов, с помощью которых удалось выделить и охарактеризовать специфические ферменты, принимающие участие в разных стадиях этого процесса. У Е. coli имеется, по крайней мере, четыре таких этапа. На первом этапе происходит разрыв цепи ДНК вблизи повреждения под действием эндонуклеазы, узнающей нарушения структуры ДНК. Такая УФ-специфическая эндонуклеаза была выделена из Micrococcus luteus и Е. coli. За разрывом цепи ДНК следует удаление пиримидиновых димеров, осуществляемое экзонуклеазой. Удаление димеров сопровождается дополнительной деградацией ДНК с образованием брешей, размеры которых варьируют от 20 до 400 нуклеотидов. Затем бреши заполняются с помощью ДНК-полимеразы, использующей в качестве матрицы интактную комплементарную цепь ДНК. Заключительный шаг в этой последовательности событии состоит в восстановлении целостности полинуклеотидной цепи в результате сшивания разрыва лигазой.

Второй тип темновой репарации — пострепликативная рекомбинационная репарация — был впервые описан Говард-Флендерсом. Как указывает само название, эта репаративная система устраняет повреждения в ДНК после того, как произошла ее репликация.

 Клеточная система репликации способна «обходить» некоторые из димеров в матричной цепи ДНК, оставляя в растущей цепи бреши, расположенные напротив каждого из них. Число брешей, возникающих таким путем, примерно соответствует числу димеров в ДНК. В результате процесса, сходного с рекомбинацией и включающего обмен между сестринскими нитями, образуется ДНК с двумя интактными цепями. Обнаружено, что при заполнении брешей происходит обмен между облученной родительской цепью ДНК и необлученной дочерней цепью. Установлено, что для образования интактных, не содержащих димеры молекул ДНК, заполнение брешей не обязательно, вместо этого концентрация димеров может просто постепенно снижаться в ходе последовательных циклов репликации ДНК после облучения (Покровский В.И., 1999).

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Асонов Н.Р. Микробиология / Н.Р. Асонов. – М.: Колос, 1980. – 312 с.

2. Камшилов М. М. Эволюция биосферы / М.М. Камшилов. - М.: Наука, 1974. - 254 с.

3. Кашнер Д. Жизнь микробов в экстремальных условиях. Пер. с англ. / Д. Кашнер. – М.: Мир, 1981. – 511 с.

4. Логинова Л.Г. Новые формы термофильных бактерий / Л.Г. Логинова, Л.А. Егорова. - М.: Наука, 1977. - 175 с.

5. Лях С.П. Адаптация микроорганизмов к низким температурам / С.П. Лях. - М.: Наука, 1976. – 160 с.

6. Марлз Дж., Грант Т., Делюмье О. Молекулярное строение стрессосом // Science, 2008. №3 C. 92 – 96

7. Радчук Н.А. Ветеринарная микробиология и иммунология / Н.А. Радчук, Г.В. Дунаев, Н.М.Колычев и др. – М.: Агропромиздат, 1991. – 383 с.

8. Покровский В.И. Микробиология / В.И. Покровский, О.Н. Поздеев. – М.: ГЭОТАР, 1999. – 1200с.

9. Бухарин О.В. Механизмы выживания бактерий / Бухарин О.В., Гинцбург А.Л., Романова Ю.М. и др. - М.: Медицина, 2005. – 367 с.

10. Заварзин Г.А. Природоведческая микробиология / Заварзин Г.А., Колотилова Н.Н. – М.: Книжный дом «Университет», 2001. – 256 с.

Механизмы выживания бактерий в окружающей среде

Работу выполнил:

студент III курса

специальности «Микробиология»

Акжигитов Абай Сарсенгалиевич

 

Научный руководитель:

доцент кафедры

Киргизова Светлана Борисовна

 

Оренбург – 2010


Содержание работы:

 

Введение

1. Механизмы выживания бактерий при низких температурах

2. Механизмы выживания бактерий при высоких температурах

2.1 Молекулярные механизмы термофилии

2.1.1 Особенность липидов и мембран

2.1.2 Термостабильность макромолекул

3. Механизмы выживания бактерий при экстремальных значениях рН

3.1 Основные механизмы выживания

4. Жизнь бактерий при высоких концентрациях солей, растворенных веществ и в условиях недостатка воды

5. Реакции бактерий на тяжелые металлы и токсичные вещества окружающей среде

6. Жизнь микроорганизмов в условиях интенсивного облучения

6.1 Защитные механизмы

6.1.1 Механизмы репарации ДНК

6.1.2 Механизмы резистентности Micrococcus radiodurans

7. Роль стрессосом как факторов выживания микроорганизмов

Заключение

Список литературы


 

ВВЕДЕНИЕ

 

Выяснение причин того, каким образом бактерии адаптируются к различным условиям окружающей среды, имеет очень важное значение для науки. Информация об этих процессах дала бы понимание основных механизмов выживания некоторых из наиболее устойчивых организмов на Земле. Разнообразные группы бактерий могут развиваться в условиях, не доступных, для других организмов.

Огромному разнообразию условий, представляемых биосферой бактериям, соответствует разнообразие их свойств и адаптаций. Обладая огромной численностью популяций и выработанными эволюцией механизмами изменчивости и диффузии генетических детерминаций, большинство бактериальных видов находится в состоянии постоянного адаптационного движения в соответствии с постоянно изменяющимися условиями среды. Бактерии обладают весьма сложными и совершенными механизмами молекулярных адаптаций, о существовании которых еще относительно недавно нельзя было даже предположить.

Если рассматривать жизнь в окружающей среде, то очевидно, что природа может быть весьма враждебной, и что организмам приходится бороться за жизнь. Давно известно, что жизнь встречается в самых суровых условиях: в горячих источниках, которые нередко отличаются повышенной кислотностью; в соленых озерах и солеварнях; в источниках с повышенной кислотностью (например, в рудничных стоках), которые могут содержать также токсичные тяжелые металлы в высоких концентрациях; на сухих поверхностях скал и в пустынях; при температурах около точки замерзания воды и даже ниже ее.

Большой интерес к адаптации микроорганизмов к разнообразным условиям окружающей среды был вызван и долгое время поддерживался поисками жизни на других планетах. Ведь зная границы жизни на Земле, можно составить представление о физических и химических пределах, в которых жизнь могла возникнуть не только на нашей, но и на других планетах.

Изучение механизмов выживания бактерий также имеет очень важное значение для медицины, ветеринарии, фармакологии. Устойчивость микроорганизмов к различным факторам среды ставит вопрос о специальных, новых методах стерилизации и хранения продуктов, что играет важнейшую роль для пищевой промышленности. Таким образом, тема данной курсовой работы является весьма актуальной в настоящее время.

В данной курсовой работе речь будет идти об условиях окружающей среды, в границах которых способны существовать микроорганизмы, а также о механизмах, при помощи которых они выживают в этих условиях.

Цель работы: исследование молекулярных и морфологических механизмов выживания бактерий в различных условиях окружающей среды.

Предмет исследования: бактериальные микроорганизмы и механизмы их выживания.

Основные задачи:

1) изучить механизмы выживания бактерий в условиях низких и высоких температур;

2) рассмотреть механизмы выживания бактерий при экстремальных значениях рН;

3) дать описание механизмов выживания бактерий при высоких концентрациях солей и растворенных веществ;

4) описать защитные реакции бактерий на действие тяжелых металлов и токсичных веществ в окружающей среде;

5) подробно рассмотреть механизмы выживания бактерий в условиях интенсивного облучения;

6) сделать общее заключение по теме курсовой работы.


 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.054 с.