Однородное линейное уравнение n-го порядка — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Однородное линейное уравнение n-го порядка

2020-04-01 140
Однородное линейное уравнение n-го порядка 0.00 из 5.00 0 оценок
Заказать работу

 

Обратимся к изучению уравнения

 

, (2.2.1)

 

коэффициенты которого непрерывны на интервале X. Как было показано в предыдущем параграфе, решение начальной задачи существует и единственно на X, чем будем существенно пользоваться ниже.

Определение. Будем говорить, что функции u1(x), …, up(x) линейно зависимы на интервале X, если существуют постоянные С1, …, Сp не все равные нулю, такие, что имеет место тождество

 

 (2.2.2)

 

В противном случае (т.е. если (2.2.2) выполняется только при С1 = … = Сp = 0) будем говорить, что u1(x), …, up(x) линейно независимы.

Определение. Назовём детерминант

 

D(x)= (2.2.3)

 

определителем Вронского

Теорема 2.1. Если решения у1(x), …, уn(x) уравнения (2.2.1) линейно зависимы на X, то .

В самом деле, согласно (2.2.2) имеем

 

.

 

Продифференцировав это тождество (n-1) раз, получим

 


 

 (2.2.5)

 

При любом  эти соотношения можно рассматривать как систему линейных однородных алгебраических уравнений относительно С1, …, Сn, имеющую нетривиальное решение по условию линейной зависимости функций уi. Следовательно, определитель системы  при любом , т.е. на Х.

Замечание. Из доказательства теоремы видно, что она справедлива не только для решений уравнения (2.2.1), но для любых (n-1) раз дифференцируемых функций.

Теорема 2.2. Если  хотя бы для одного , то решения у1(x),…, уn(x) уравнения (2.2.1) линейно зависимы на X.

Доказательство.

Возьмём точку x = x0 в которой , и составим систему линейных алгебраических уравнений относительно С1,…, Сn с определением :

 

 (2.2.6)

 

Так как , то эта система имеет нетривиальное решение С1, …, Сn. Рассмотрим линейную комбинацию

 

.

 

Согласно теореме 1.4 у(x) является решением уравнения (2.2.1), а (2.2.6) означает, что это решение удовлетворяет в точке x0 нулевым начальным условиям у(х0) = 0,…, у(n-1)(x0) = 0. Так как тривиальное решение уравнения (2.2.1) удовлетворяет, очевидно, тем же начальным условиям, то, в силу теоремы единственности, у(x) (x)  0, т.е. , где по настроению не все С1 равны нулю, а это и означает линейную зависимость у1(x), …, уn(x).Что и требовалось.

Из доказанных теорем непосредственно вытекает следующая альтернатива.

Теорема 2.3. Определитель Вронского D(x) либо тождественно равен нулю, и это означает, что решения у1(x), …, yn(x) линейно зависимы, либо не обращается в нуль ни в одной точке Х, и это означает, что у1(x), …, yn(x) линейно независимы.

Ситуацию можно выразить следующей схемой:

 

D(x)=

 

при любом x Х.

Определение. Фундаментальной системой решений уравнения (2.2.1) будем называть любые n линейно независимых решений уравнения (2.2.1)

Теорема 2.4. Линейное однородное уравнение имеет фундаментальную систему решений.

Доказательство.

Действительно, возьмём произвольный отличный от нуля определитель D0 с элементами . Определим решения у1(x), …, уn(x) уравнения (1.2.1) следующими начальными условиями:

 

 (4.7)

 

Составим определитель Вронского D(x). В силу (2.2.7) D(x0) = D0 0. А тогда, в силу теоремы 1.3, у1(x), …, уn(x) линейно независимы.

Замечание. Так как существует бесконечно много определителей, отличных от нуля, для каждого уравнения существует бесконечно много фундаментальных систем решений. Кроме того, линейное невырожденное преобразование

 

 

переводит одну фундаментальную систему решений в другую.

Докажем теперь основную теорему данного параграфа.

Теорема 2.5. Если у1(x), …, уn(x) - фундаментальная система решений, то любое решение у(x) уравнения (2.2.1) представимо в виде

 

, (2.2.8)

 

где С1, …, Сn - некоторые постоянные.

Доказательство.

Пусть у(х0) = у10, …, уn-10) = уn0. Определим постоянные С1, …, Сn линейной системой уравнений с детерминантом, равным D(х0)  0:

 

 (2.2.9)

 

и построим . Согласно теореме 1.4. (x) является решением уравнения (2.2.1), а (2.2.9) означает, что это решение удовлетворяет тем же начальным условиям, что и у(x). Тогда, в силу единственности,

 

.Что и требовалось.

Замечание. Формула (2.2.8), где С1, …, Сn - произвольные постоянные, является общим решением уравнения (2.2.1), т.е. (2.2.8) является формулой, содержащей все решения уравнения (2.2.1) и не содержащей ничего, кроме решений. В самом деле, по теореме 1.4 при любых С1, …, Сn (2.2.8) является решением уравнения (2.2.1), а согласно только что доказанной теореме в (2.2.8) содержится любое решение уравнения (2.2.1).

Замечание. На языке линейной алгебры теоремы 2.4 и 2.5 означают, что в пространстве решений линейного однородного уравнения (2.2.1) имеется базис из n элементов, т.е. это пространство n-мерное.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.