Понятие о свойствах товаров и их классификация — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Понятие о свойствах товаров и их классификация

2020-04-01 76
Понятие о свойствах товаров и их классификация 0.00 из 5.00 0 оценок
Заказать работу

Содержание

 

Введение

. Понятие свойства товаров и их классификация

. Физические свойства товаров и методы их определения

. Химические свойства товаров и методы их определения

. Биологические свойства товаров

. Свойства, обеспечивающие безопасность товаров в потреблении

Заключение

Список использованных источников

 


Введение

 

Свойства готовых изделий, срок службы и поведение их при транспортировании, хранении и эксплуатации зависят прежде всего от природных свойств исходного сырья, а также структуры и свойств, приобретенных изделиями в процессе технологической обработки.

Свойства материалов и готовых изделий по их природе делят на химические, физические, физико - химические и биологические. Кроме того, выделяют потребительские свойства, к которым относят те же свойства, но характеризующие какую - либо из особенностей товара в процессе эксплуатации (потребления).

При оценке качества товаров учитывается комплекс свойств и их показателей, наиболее важных для конкретного изделия.

Актуальность выбранной темы курсовой работы вызвана тем, что свойство товара - это его объективная особенность, т.е. то, что отличает один товар от другого. Каждому товару присущи многие свойства, которые могут проявляться при его формировании, эксплуатации или потреблении.

Целью курсовой работы является изучение свойств товаров и их влияние на качество.

В этой курсовой работе излагаются лишь общие сведения о свойствах и их показателях, характеризующих большинство материалов и готовых изделий. Изучая свойства и их показатели, необходимо уяснить их весомость и значимость при оценке качества готовых изделий с учетом назначения и условий службы этих изделий, а также терминологию, размерность, числовые значения и методику определения и расчета.

Для достижения поставленной цели в курсовой работе были решены следующие задачи:

отражено понятие о свойствах товаров и их классификация;

изучены физические свойства товаров и методы их определения;

рассмотрены химические свойства товаров и методы их определения;

охарактеризованы биологические свойства товаров;

изложены свойства, обеспечивающие безопасность товаров в потреблении.

Информационной основой для написания данной курсовой работы послужила учебно-методическая литература ведущих отечественных товароведов.

Структура курсовой работы состоит из введения, 5 основных вопросов, заключения и списка использованных источников. Выполнена на 46 страницах.

 


Заключение

 

В результате проделанной работы можно сделать ряд выводов.

Только в разумном обществе существует производство и потребление продукции. Продукция реализуемая изготовителем, выполняет функции товара и потенциально предмета потребления. Товары, как предметы потребления, следует считать социальным явлением. Производитель изучает потребности и в соответствии с результатами таких изучений производит нужные потребителям товары (предметы потребления).

Свойства товаров, как предметов потребления, проявляется на всех этапах жизненного цикла предмета потребления.

По ГОСТ 15467-79 под качеством понимают совокупность свойств продукции, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Каждый товар обладает присущей только ему совокупностью свойств.

Свойство - объективная особенность продукции, проявляющаяся при ее создании, эксплуатации или потреблении, транспортировании, хранении, ремонте. У каждого товара множество свойств, однако в структуру качества входят лишь те, от которых зависит ее применение. Среди них особое значение имеют свойства, которые проявляются в процессе эксплуатации или потребления и называются потребительскими.

Свойства условно подразделяют на простые и сложные. Простое свойство характеризуется одной особенностью. Сложное свойство - комплекс особенностей, проявляющихся в совокупности.

Свойства товаров характеризуются показателями, т.е. количественными характеристиками. Величину свойства можно выразить в сантиметрах (ширина ткани), ньютонах (прочность ткани при растяжении), градусах (термостойкость стакана), баллах и др. Показатели тех свойств, которые входят в состав качества, называют показателями качества, а показатели любых свойств, присущих продукции, - параметрами.

Показатели качества классифицируют по ряду признаков: по характеризуемым свойствам, способу выражения, количеству характеризуемых свойств, по применению для оценки и др.

В зависимости от природы свойства делятся на химические, физические, биологические и смешанные. К химическим свойствам относится реакция на действие воды (растворимость в воде, водостойкость), оснований, кислот, окислителей, восстановителей, растворителей, различных химических сред и др.

К физическим свойствам относятся: механические, термические, оптические, акустические, электрические и электромагнитные. Биологические свойства характеризуют устойчивость материалов и изготовленных из них изделий к повреждаемости микроорганизмами, насекомыми, грызунами. К смешанным свойствам относятся физико-химические, биохимические и др.

 


Содержание

 

Введение

. Понятие свойства товаров и их классификация

. Физические свойства товаров и методы их определения

. Химические свойства товаров и методы их определения

. Биологические свойства товаров

. Свойства, обеспечивающие безопасность товаров в потреблении

Заключение

Список использованных источников

 


Введение

 

Свойства готовых изделий, срок службы и поведение их при транспортировании, хранении и эксплуатации зависят прежде всего от природных свойств исходного сырья, а также структуры и свойств, приобретенных изделиями в процессе технологической обработки.

Свойства материалов и готовых изделий по их природе делят на химические, физические, физико - химические и биологические. Кроме того, выделяют потребительские свойства, к которым относят те же свойства, но характеризующие какую - либо из особенностей товара в процессе эксплуатации (потребления).

При оценке качества товаров учитывается комплекс свойств и их показателей, наиболее важных для конкретного изделия.

Актуальность выбранной темы курсовой работы вызвана тем, что свойство товара - это его объективная особенность, т.е. то, что отличает один товар от другого. Каждому товару присущи многие свойства, которые могут проявляться при его формировании, эксплуатации или потреблении.

Целью курсовой работы является изучение свойств товаров и их влияние на качество.

В этой курсовой работе излагаются лишь общие сведения о свойствах и их показателях, характеризующих большинство материалов и готовых изделий. Изучая свойства и их показатели, необходимо уяснить их весомость и значимость при оценке качества готовых изделий с учетом назначения и условий службы этих изделий, а также терминологию, размерность, числовые значения и методику определения и расчета.

Для достижения поставленной цели в курсовой работе были решены следующие задачи:

отражено понятие о свойствах товаров и их классификация;

изучены физические свойства товаров и методы их определения;

рассмотрены химические свойства товаров и методы их определения;

охарактеризованы биологические свойства товаров;

изложены свойства, обеспечивающие безопасность товаров в потреблении.

Информационной основой для написания данной курсовой работы послужила учебно-методическая литература ведущих отечественных товароведов.

Структура курсовой работы состоит из введения, 5 основных вопросов, заключения и списка использованных источников. Выполнена на 46 страницах.

 


Понятие о свойствах товаров и их классификация

 

Свойство - это объективная особенность продукции, проявляющаяся при ее создании, эксплуатации или потреблении. Свойства принято группировать по определенным признакам. В зависимости от количества характеризуемых особенностей свойства бывают сложные и простые.

В товароведении имеют место существенные различия в структуре и характеристике свойств и материалов изделий.

Свойства материалов и готовых изделий могут подразделяться по их природе, а также в зависимости от того, какую из особенностей товара они характеризуют.

Для материалов как правило определяют и оценивают показатели физических, химических и микробиологических свойств. В изделиях, кроме того, важными свойствами выступают комплектность, универсальность, трансформируемость, габаритность (ее изменяемость - складные изделия), равноресурсность материалов (в изделии) и их взаимозаменяемость.

Сложные свойства состоят из групп свойств, которые включают в себя подгруппы свойств и простые свойства. Например, тепловое сопротивление текстильных материалов, от которого зависит способность одежды защищать человека от неблагоприятных воздействий окружающей среды, является сложным свойством. Оно определяется теплопроводностью вещества волокон, из которых состоит материал, и теплоотдачей с поверхности материала. Эстетические свойства являются сложными свойствами, они подразделяются на свойства, определяющие информационную выразительность, целостность композиции, рациональность формы и совершенство производственного исполнения. Каждое из этой группы свойств делится на простые свойства.

В зависимости от природы свойства делятся на химические, физические, биологические и смешанные.

К химическим свойствам относится реакция на действие воды (растворимость в воде, водостойкость), оснований, кислот, окислителей, восстановителей, растворителей, различных химических сред и др.

К физическим свойствам относятся: механические, термические, оптические, акустические, электрические и электромагнитные. Биологические свойства характеризуют устойчивость материалов и изготовленных из них изделий к повреждаемости микроорганизмами, насекомыми, грызунами. К смешанным свойствам относятся физико-химические, биохимические и др.

К физико-химическим относятся свойства, проявление которое сопровождается физическими и химическими явлениями в различных условиях. Важнейшими физико-химическими свойствами являются сорбционные, диффузионные, проницаемости и др. От физико-химических свойств зависят назначение и функционирование материалов и изделий в различных условиях производства и эксплуатации. Их учитывают при оценке качества тканей, кожи, древесины, строительных материалов и других изделий.

Устойчивость товаров, особенно органического происхождения, к действию микроорганизмов определяется при оценке их качества. Плесневые грибы и гнилостные бактерии разрушают органические материалы и изделия, за исключением некоторых видов пластических масс. Степень повреждения материалов микроорганизмами зависит от условий окружающей среды - влажности, температуры, значения рН.

Известно, что с повышением влажности и температуры окружающей среды (до 2О-4О°С) гнилостные процессы ускоряются. Изделия, в которых протекают эти процессы, теряют блеск, прочность, изменяются их внешний вид, окраска; иногда изделия могут полностью разрушиться.

Для повышения стойкости материалов и изделий к воздействию микроорганизмов и придания им противогнилостных свойств их обрабатывают специальными антисептическими средствами - различными химическими веществами. Знание биологических свойств товаров необходимо для выбора тары и упаковки, условий транспортирования, хранения и эксплуатации товаров (ухода за ними).

Отдельные свойства исходных материалов и их показатели широко используются для характеристики готовых изделий и при оценке их качества. Они обуславливают поведение материалов и готовых изделий в процессе эксплуатации, транспортирования, хранения и ухода.

Технологические свойства характеризуют поведение исходных материалов в процессе производства из них изделий. Так, к технологическим свойствам тканей относятся так называемые пошивочные свойства, показателями которых являются: прорубание иглой, сопротивление раздиранию и др.; для древесины - способность к изгибу.

В процессе эксплуатации (потребления) одни свойства товаров могут способствовать удовлетворению потребности, а другие - нет. Поэтому возможно их деление на положительные и отрицательные. Так, к отрицательным свойствам могут быть отнесены шум электробытовых машин, электризуемость тканей, одежды.

 

2. Физические свойства товаров и методы их определения

 

К физическим относятся внешние параметры изделий, а также механические, термические, оптические, акустические и электрические свойства материалов и изделий. Физические свойства учитываются при оценке качества товаров, определении сроков службы и условий хранения, эксплуатации (потребления) и утилизации.

Размеры, массу, объемную и насыпную массу, массу 1 м2, удельный вес, плотность относят к внешним параметрам материалов и изделий.

Структурные характеристики часто получают, сочетая размеры и массу. Например, основным параметром структуры нитей является линейная плотность нитей (толщина). Для тканей большое значение имеют показатели заполнения: линейное, поверхностное, объемное (пористость). Основные размеры - длина, толщина, ширина, высота и глубина.

Масса - один из основных физических параметров товара. Масса материалов и готовых изделий широко используется при характеристике и оценке качества многих товаров. Для некоторых товаров этот показатель регламентируют нормативными и техническими документами. Например, масса спортивных товаров является строго нормируемым показателем. Так, масса спортивной гранаты должна быть 300, 500 и 750 г, диска - 500, 750, 1000, 1500 и 2000 г, копья - 500, 600 и 800 г.

По массе можно судить о природе материала, особенностях его строения (плотности, пористости), а также о таких свойствах материалов и готовых изделий, как водопоглощение, теплопроводность, прочность и др.

Масса учитывается при разработке конструкций изделий, упаковке, транспортировании и хранении товаров. Например, масса автомобиля предопределяет эффективность создания тормозной системы. Массу гигроскопических изделий определяют с учетом относительной влажности и температуры воздуха, а также влажности самого материала. Для этих материалов принято нормировать кондиционную массу, которую обязательно указывают на упаковке

Объемнаямасса - масса единицы объема пористых тел (г/см3):

 

Þо = m/V, (ф.1)

 

где т - масса материала или изделия, г; V - объем пористого материала или изделия, см3.

Объемные массы различных материалов не одинаковы и зависят от природы и характера строения вещества. Значение объемной массы часто определяет прочность, теплопроводность, водопоглощение и другие показатели. С повышением пористости объемная масса уменьшается. Минимальной объемной массой обладают теплоизоляционные материалы - пенополистирол, пенопласт, синтепон и др.

Плотность, размеры и форму частиц можно характеризовать насыпной массой - комплексным показателем, определяющимся собственно массой, плотностью и размером. Например, у вещества с уменьшением размера частиц увеличивается насыпная масса. Этот показатель учитывают при дозировке и отпуске сыпучих веществ, определении загруженности транспорта и заполнении объема хранилища.

По массе 1 м2характеризуют рулонные и листовые материалы - ткани, кожу, пленки, бумагу, картон, обои. По этому показателю отличают, например, картон от бумаги: продукция массой 1 м2 до 250 г является бумагой, а более 250 г - картоном. Ткани в зависимости от массы 1 м2 (поверхностная плотность) имеют разное назначение. Так, масса 1 м2 бельевых тканей от 70 до 190 г, а костюмных - от 220 до 400 г.

Масса 1 м2 материала должна определяться при постоянной относительной влажности и температуре воздуха.

Плотность - это физическая величина, определяемая отношениеммассы материала (изделия) к занимаемому им объему (г/см):

 

Р= m/V, (ф. 2)

 

где т - масса тела, г; V- объем тела, см3.

Плотность характеризует определенный материал и зависит от химического состава, степени чистоты, наличия примесей, а также температуры и давления.

Плотность материала, как правило, уменьшается с возрастанием температуры (вследствие теплового расширения) и увеличивается с повышением давления. Исключение составляет вода: ее плотность максимальна при температуре 3,98°С (4°С) и уменьшается с повышением и понижением температуры.

Плотность используют для определения пористости материалов. Пористость (%):


П=[1-(ро/р)]100, (ф.3)

 

где Ро - объемная масса, г/см3; р - плотность, г/см3.

Часто в качестве характеристики изделия используют относительную плотность,которая представляет собой отношение плотности рассматриваемого материала или изделия к плотности другого (условного) вещества при определенных условиях. Условным веществом обычно принимают дистиллированную воду. Относительную плотность газов выражают по отношению к сухому воздуху, кислороду или водороду, взятым при тех же условиях, что и рассматриваемый газ, или в так называемом нормальном состоянии.

Относительную плотность можно также рассматривать как отношение массы данного материала к массе условного вещества, взятого в том же объеме при определенных условиях. Относительная плотность одного и того же материала имеет различные числовые значения в зависимости от того, при какой температуре плотность воды принята за условную единицу.

Относительную плотность жидких и твердых материалов принято выражать отношением плотности материала при нормальной температуре (20°С) к плотности дистиллированной воды при температуре 4°С. С достаточной точностью плотность воды при температуре 4°С можно принять равной 1 г/см3, т. е. относительная плотность материала численно совпадает с его плотностью при температуре 20°С, выраженной в граммах на кубический сантиметр.

Механические свойства и их показатели имеют большое значение при оценке качества материалов, обосновании выбора их для изделий, разработке конструкции изделия и параметров технологического процесса его изготовления.

В процессе изготовления и эксплуатации материалы и изделия испытывают действие различных усилий (сил). Приложение к материалу внешних усилий называют нагрузкой, а их снятие - разгрузкой. Усилия различают по площади приложения, характеру действия на материалы во времени и по направлению, числу циклов воздействия и др.

По площади приложения нагрузки бывают распределенные и сосредоточенные. Распределенные нагрузки делят на поверхностные и объемные. Поверхностные нагрузки прилагаются ко всей поверхности материала, например аэродинамическая нагрузка на кузов автомобиля. Объемные нагрузки распределены по всему объему тела, например сила тяжести и сила инерции. Сосредоточенные нагрузки прилагаются к малой площадке (точке), например при проколе иглой материал испытывает сосредоточенную нагрузку.

По характеру действия на материалы и изделия нагрузки бывают статические и динамические. Статические нагрузки, прикладываемые к материалу, действуют непрерывно в течение сравнительно длительного времени. При динамических нагрузках на материал действуют силы, которые изменяют свое значение или направление. Так, подвесное устройство люстры испытывает статическую нагрузку, а на гвоздь при его забивании молотком действует динамическая нагрузка.

По числу циклов воздействия различают полу-, одно- и многоцикловые нагрузки. Под цикломпонимается суммарное время воздействия нагрузки, разгрузки и отсутствия нагрузки (отдых).

Полуцикловые характеристики определяют поведение материалов при однократном, обычно предельном действии нагрузки, вызывающем разрушение. Они отражают деструкцию молекул вещества, составляющего материал, потерю массы материала и др.

Одноцикловые характеристики, получаемые чаще при длительном нагружении с последующим отдыхом, отражают влияние временного фактора, особенности деформации материалов, их способность сохранять форму.

Многоцикловые характеристики определяют стабильность механических свойств при многократных силовых воздействиях. Под действием многократных по значению, но кратковременно действующих сил, нарушается структура тел, ослабляются межмолекулярные связи, даже деструктируются молекулы. Таким образом, многоцикловыми характеристиками оценивают устойчивость структуры. Многоцикловые нагрузки испытывает, например, обувь при ходьбе.

Под действием нагрузки изменяются размеры материалов и изделий. Явление изменения линейных и угловых размеров мате риалов и изделий называется деформацией.Деформация являете следствием изменения средних расстояний между частицами (молекулами, атомами, ионами) вещества тела. Деформация материала зависит от значения и вида нагрузки, внутреннего строения, формы и характера расположения отдельных частиц, сил межмолекулярного и межатомного сцепления.

Полная деформация материалов и изделий слагается из обратимой (упругой Еу и эластической Еэ) и необратимой (пласт ческой Епл). При обратимой деформации первоначальное состояние и размеры тела полностью восстанавливаются сразу после разгрузки.

Деформация считается необратимой, если тело после разгрузки не получает исходные размеры.

 

Еобщ=Еу+Еэ+Епл, (ф.4)

 

Составные части полной деформации под действием внешней силы начинают развиваться одновременно, но с различными, присущими им, скоростями.

Упругаядеформация мгновенно исчезает после разгрузки. Упругая деформация возникает потому, что под действием внешней силы происходят небольшие изменения средних расстояний между частицами материалов, между соседними звеньями и атомами в макромолекулах. При этом межмолекулярные и межатомные связи сохраняются, а валентные углы немного увеличиваются. Эти изменения приводят к тому, что упругая деформация вызывает увеличение объема деформируемого тела. Упругая деформация распространяется со скоростью звука в данном материале, она свойственна материалам не только кристаллического строения, возникает и у материалов аморфного упорядоченного строения, например стекла, когда взаимодействие между частицами тела велико.

Эластическаядеформация возникает, когда под действием внешних факторов происходят изменения конфигурации макромолекул материала, а также их перегруппировка. У некоторых полимерных материалов, например каучука, эта деформация может достигать нескольких сотен процентов и потому называется высокоэластической.

Под действием внешней силы макромолекулы переходят в более распрямленное состояние и ориентируются по направлению Действия сил. Для подобной перегруппировки требуется значительное время. Такая деформация осуществляется как релаксационный процесс, идущий во времени и приводящий к достижению равновесного состояния.

Под релаксациейпонимается процесс постепенного перехода материала (системы) из неравновесного состояния, вызванного внешними факторами, в состояние равновесия. При этом снижение напряжений происходит вследствие постепенного уменьшения упругой деформации и приращения на то же значение пластической деформации. Продолжительность релаксации зависит от материала и начального напряжения и изменяется от десятков сотен часов. Скорость релаксации возрастает с увеличением температуры.

Явление релаксации необходимо учитывать при технологически обработке материалов и изучении внутренних напряжений в изделиях. Желательно, чтобы процесс релаксации прошел до поступления товара в эксплуатацию. Если релаксация проявляется в процессе эксплуатации изделия, возможна его деформация. С явлением релаксации тесно связано явление гистерезиса, или запаздывания. Таким образом, эластическая деформация развивается во времени с небольшой скоростью. Она сильно зависит от условий, влияющих на межмолекулярное взаимодействие. Например, повышение температуры, поглощение малых молекул различных веществ, ослабляющих межмолекулярное взаимодействие (так называемая пластификация), ускоряют развитие деформации.

Эластическая деформация чаще проявляется у изделий на основе высокомолекулярных органических соединений (полимеров) и материалов (кожа, ткани, каучук и др.). Значение этой деформации важно для эксплуатации одежды, с ней связаны сминаемость и распрямление тканей. Ткани с высокой эластической деформацией характеризуются хорошей износостойкостью. Релаксация эластической деформации является одной из причин усадки текстильных материалов - их укорочения при смачивании и нагревании, в частности при стирке и других влажно-тепловых воздействиях.

Пластическаядеформация остается в материале после разгрузки. В этом случае в материале происходят необратимые смещения звеньев макромолекул на большие расстояния. При развитии этого вида деформации у полимерных материалов макромолекулы преодолевают значительные межмолекулярные связи, поэтому эта деформация развивается медленнее, чем эластическая. У кристаллических материалов пластическая деформация связана с нарушением кристаллической структуры. Пластическая деформация необратима, так как после удаления внешней силы отсутствуют причины ее исчезновения.

В зависимости от того, какие виды деформации в большей степени проявляются в материале, их условно делят на пластичные и хрупкие. Для пластичных материалов характерно явление текучести, когда при определенных нагрузках материал начинает деформироваться под действием постоянной (не увеличивающейся) нагрузки. Отсутствие текучести проявляется как хрупкость.

Типичными представителями пластичных материалов являются незакаленные углеродистые и легированные стали, медь, свинец, алюминий, глина, а хрупких - чугун, закаленная легированная сталь, стекло. Материалы, в которых проявляется в основном упругая деформация и ничтожно малы другие виды деформации, называются упругими. Важно знать, каковы соотношения упругой и пластической деформаций и их природу.

В зависимости от направления приложенной внешней различают деформации растяжения, сжатия, изгиба, сдвига, кручения и др.

Деформация растяженияхарактеризуется изменением размеров материала под действием продольных (растягивающих) Она проявляется при эксплуатации тканей, кожи, одежды, обуви, строительных материалов и др.

Различные материалы неодинаково реагируют на растяжение, что позволяет судить о специфике их свойств. При одних и тех же значениях нагрузки деформация не одинакова. При разгрузке наблюдается большее удлинение материала, чем при нагружении. Кривая разгружения в этом случае не совпадает с кривой нагружения. При этом образуется петля гистерезиса. Площадь петли гистерезиса характеризует затраты энергии на нагревание материала и преодоление сил трения между отдельными частицами при переходе их в первоначальное состояние. Для упругих материалов петля гистерезиса имеет вид замкнутой кривой.

Если тело при растяжении пластически деформируется, то потеря энергии необратима, и при каждом повторном нагружении начало кривой растяжения перемещается из одной точки в другую. При этом повышается жесткость и уменьшается пластичность материала. Это необходимо учитывать при выборе материала для изготовления изделий.

Деформация сжатияважна для хрупких материалов. Ее можно рассматривать так же, как деформацию растяжения, но с обратным знаком. При деформации сжатия в отличие от растяжения увеличиваются поперечные размеры и уменьшается длина образца. Основной показатель деформации сжатия - разрушающее напряжение, вычисляемое по той же формуле, что и для растяжения. Некоторые материалы (кирпич, цемент и др.) по этому показателю делят на марки. Хрупкие материалы разрушаются внезапно, без остаточных деформаций. Пластические материалы разрушаются постепенно, характеризуются большими остаточными деформациями.

Деформации изгиба - это вид деформации, характеризующийся искривлением оси или срединной поверхности деформируемого объекта под действием внешних факторов. Они проявляются при эксплуатации одежды, обуви, строительных материалов.

Если на середину бруса, лежащего на двух опорах, действовать сосредоточенной нагрузкой, то в выпуклой части наблюдается деформация растяжения, а в вогнутой - деформация сжатия; в зоне нейтрального слоя деформации нет.

Деформация изгиба характеризуется стрелой прогиба. При этом напряжение сжатия в вогнутой части бруса постепенно уменьшается до нейтрального слоя, в котором не наблюдается никаких напряжений. Ниже этого уровня возрастает напряжение растяжения. Значения напряжений растяжения и сжатия зависят от изгибающего момента, модуля упругости материала, места расположения и удаления определенной части от нейтральной линии и от радиуса кривизны. Деформация в слое, отстоящем от нейтрального слоя, прямо пропорциональна этому расстоянию и обратно пропорциональна радиусу кривизны нейтрального слоя. Если слой имеет большую толщину, а радиус кривизны мал, возникают значительные напряжения и материал разрушается.

Деформации сдвигапроявляются в местах соединений деталей, когда две равные силы (Q) действуют в противоположном направлении и расположены в двух близких поперечных сечениях. Деформация сдвига определяется углом сдвига. Если сдвиг частиц тела происходит в одной плоскости, то деформация называется срезом.Деформация сдвига частично связана с деформациями кручения и изгиба и, как правило, предшествует им. Значение, на которое сечение сместилось относительно соседнего, называется абсолютным сдвигом.

Деформация кручения - вид деформации, характеризующийся взаимным поворотом поперечных сечений стержня, вала, нити под влиянием моментов (пар сил), действующих в противоположных направлениях в плоскости этих сечений. Деформация кручения сообщается волокнам и нитям. Скрученность характеризуется круткой, углом наклона волокон или нитей к продольной оси и направлением крутки (правая, левая).

Напряжение при кручении в определенной точке стержня пропорционально ее расстоянию до центра сечения. Наибольшее напряжение испытывают поверхностные слои материала, а наименьшее - внутренние.

По значению деформации судят о механических свойствах материалов и изделий: пластичности, упругости, прочности, твердости, хрупкости, выносливости, износостойкости и др.

Пластичность - свойство твердых тел необратимо деформироваться под действием механических нагрузок. Пластичность определяет возможность технологических операций обработки материалов давлением (ковки, проката и др.).

Упругость - свойство материала или изделия полностью восстанавливать сразу после разгрузки взаимные положения частиц (размеры тела), которые были до нагрузки. Показателем, характеризующим способность материала упруго сопротивляться нагрузим, является модуль упругости Е (МПа).

Прочность - способность материала выдерживать действие внешних факторов до предельного состояния (разрушения). Как изустно, под действием нагрузки в материале возникают внутренне напряжения, которые могут привести к разрушению или появлению в материале недопустимой пластической деформации (предельного состояния). Исходя из вида деформаций различают прочить при растяжении, сжатии, изгибе, кручении, ударе и др.

При изгибе, кручении, сдвиге в отдельных участках материала имеет место деформаций растяжения. Поэтому наиболее часто определяются именно прочностные характеристики при растяжении. На реакцию материала на растяжение существенно влияют размеры и форма образцов, а также скорость увеличения нагрузки и условия среды. При большой длине образцов заметнее влияние неравномерности материала и его релаксационные особенности, поэтому показатели механических свойств материала могут искажаться. В стандартах на методы испытаний материалов и изделий нормируются размеры образца и параметры испытания.

Например, хрупкие материалы (стекло, фарфор, чугун) лучше переносят сжатие, чем растяжение, изгиб, удар.

Прочность материалов и изделий можно оценивать в абсолютных и относительных единицах. К характеристикам прочности относятся разрывная нагрузка, разрывное напряжение, разрывное удлинение, работа разрыва, усталостная прочность, стойкость к истиранию, стойкость к растяжению и изгибу и др. По результатам испытаний строится диаграмма растяжения. Значения некоторых показателей регламентируются стандартами. По этим показателям можно судить о режиме изготовления изделий и их поведении при эксплуатации.

Нагрузка, при которой материал разрушается, называется разрывной.Показатель разрывной нагрузки определяют непосредственно на разрывной машине в момент разрыва материала. Разрывная нагрузка используется для общей оценки прочности без уточнения конкретных условий использования материала. Так, разрывная нагрузка является показателем механических свойств ткани.

Разрывное напряжение(Па) - отношение максимальной нагрузки, предшествующей разрушению Рр (Н), к первоначальной площади поперечного сечения образца S02):

B=Pp/S0, (ф.5)

 

Разрывное напряжение позволяет сравнивать прочность различных материалов в недеформированном состоянии.

Абсолютное разрывное удлинение I р представляет собой приращение длины растягиваемого образца к моменту его разрыва и выражается в единицах длины (километрах, метрах, миллимах и др.). Показатель абсолютного разрывного удлинения используется при выборе материала, удлинение которого не превышает конкретного значения при нагрузке до разрыва.

Относительное разрывное удлинение определяют как отношение абсолютного разрывного удлинения к начальной длине пробы.

Этот показатель используется при общей оценке свойств материалов и изделий без уточнения конкретных условий их применения и тогда, когда требуются материалы с определенным удлинением.

Показатели разрывного удлинения учитываются при оценке качества ниток, тканей, канатов, тросов, проволок, пленок, бумаги и других товаров.

В качестве комплексных характеристик прочности используют относительную и абсолютную работу разрыва.

Абсолютнаяработа разрыва (Дж), т. е. работа, совершаемая внешней силой при воздействии на материал, показывает, какое количество энергии затрачено на преодоление энергии связей между частицами структуры материала при его разрушении.

Относительнаяработа разрыва оценивается отношением работы разрыва к массе или объему испытуемого материала или изделия.

Работа разрыва облегчает оценку свойств материала в целом, позволяет определить возможность замены одного материала другим. Чем больше работа разрыва, тем труднее материал разрушить, тем, следовательно, он прочнее.

Многие материалы в процессе изготовления и эксплуатации испытывают многоцикловые нагрузки. При таких воздействиях происходят сложные изменения структуры материалов и накапливание остаточной деформации.

Возможны концентрация напряжений, при которых структура имеет дефекты, а также смещение элементов структуры без усиления связи между ними, возникновения и увеличения трещин, приводящих к разрушению материала.

Процесс постепенного изменения структуры и свойств материала вследствие его многократной деформации называется утомлением. В результате утомления появляется усталость - ухудшение свойств материала, не сопровождающееся существенной потерей массы.


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.098 с.