Применение в экономике и бизнесе — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Применение в экономике и бизнесе

2020-04-01 145
Применение в экономике и бизнесе 0.00 из 5.00 0 оценок
Заказать работу

нейросетевой интеллект искусственный бизнес

Нейронные сети могут быть реализованы программным или аппаратным способом.

Вариантами аппаратной реализации являются нейрокомпьютеры, нейроплаты и нейроБИС (большие интегральные схемы). Одна из самых простых и дешевых нейроБИС - модель MD 1220 фирмы Micro Devices, которая реализует сеть с 8 нейронами и 120 синапсами. Среди перспективных разработок, можно выделить модели фирмы Adaptive Solutions (США) и Hitachi (Япония). Разрабатываемая фирмой Adaptive Solutions нейроБИС является одной из самых быстродействующих: объявленная скорость обработки составляет 1,2 млрд. межнейронных соединений в секунду (мнс/с). Схемы, производимые фирмой Hitachi, позволяют реализовывать искусственные нейронные сети, содержащие до 576 нейронов.

Большинство современных нейрокомпьютеров представляют собой персональный компьютер или рабочую станцию, в состав которых входит дополнительная нейроплата. К их числу относятся, например, компьютеры серии FMR фирмы Fujitsu. Возможностей таких систем вполне хватает для решения большого числа прикладных задач методами нейроматематики, а также для разработки новых алгоритмов. Наибольший интерес представляют специализированные нейрокомпьютеры, в которых реализованы принципы архитектуры нейросетей. Типичными представителями таких систем являются компьютеры семейства Mark фирмы TRW (первая реализация перцептрона, разработанная Ф. Розенблатом, называлась Mark I). Модель Mark III фирмы TRW представляет собой рабочую станцию, содержащую до 15 процессоров семейства Motorola 68000 с математическими сопроцессорами. Все процессоры объединении шиной VME. Архитектура системы, поддерживающая до 65000 виртуальных процессорных элементов с более чес 1 млн. настраиваемых соединений, позволяет обрабатывать до 450 тыс. мнс/с.

Другим примером является нейрокомпьютер NETSIM, созданный фирмой Texas Instruments на базе разработок Кембриджского университета. Его топология представляет собой трехмерную решетку стандартных вычислительных узлов на базе процессоров 80188. Компьютер NETSIM используется для моделирования сетей Хопфилда-Кохонена. Его производительность достигает 450 млн. мнс/с.

В тех случаях, когда разработка или внедрение аппаратных реализаций нейронных сетей обходятся слишком дорого, применяют более дешевые программные реализации. Одним из самых распространенных программных продуктов является семейство программ BrainMaker фирмы CSS (California Scientific Software). Первоначально разработанный фирмой Loral Space Systems по заказу NASA и Johnson Space Center пакет BrainMaker бал вскоре адаптирован для коммерческих приложений и сегодня используется несколькими тысячами финансовых и промышленных компаний, а также оборонными ведомствами США для решения задач прогнозирования, оптимизации и моделирования ситуаций.

Назначение пакета BrainMaker - решение задач, для которых пока не найдены формальные методы и алгоритмы, а входные данные неполны, зашумлены и противоречивы. К таким задачам относятся прогнозирование курсов валют и акций на биржах, моделирование кризисных ситуаций, распознавание образов и многие другие. BrainMaker решает поставленную задачу, используя математический аппарат теории нейронных сетей (более конкретно - сеть Хопфилда с обучением по методу обратного распространения ошибки). В оперативной памяти строится модель многослойной нейронной сети, которая обладает свойством обучаться на множестве примеров, оптимизируя свою внутреннюю структуру. При правильном выборе структуры сети после ее обучения на достаточно большом количестве примеров можно добиться высокой достоверности результатов (97% и выше). Существуют версии BrainMaker для MS DOS и MS Windows, а также для Apple Macintosh. Кроме базовой версии пакета в семейство BrainMaker входят следующие дополнения:

•   BrainMaker Student - версия пакета для университетов. Она особенно популярна у небольших фирм, специализирующихся на создании приложений и для не очень сложных задач.

•   Toolkit Option - набор из трех дополнительных программ, увеличивающих возможности BrainMaker, Binary, которая переводит обучающую информацию в двоичный формат для ускорения обучения; Hypersonic Training, где используется высокоскоростной алгоритм обучения; Plotting, которая отображает факты, статистику и другие данные в графическом виде.

•   BrainMaker Professional - профессиональная версия пакета BrainMaker с расширенными функциональными возможностями. Включает в себя все опции Toolkit.

•   Genetic Training Option (для пакета BrainMaker Pro) - программа автоматической оптимизации нейронной сети для решения заданного класса задач, использующая генетические алгоритмы для селекции наилучших решений.

•   Dat а Maker Editor - специализированный редактор для автоматизации подготовки данных при настройке и использовании нейронной сети.

•   Training Financial Data - специализированные наборы данных для настройки нейронной сети на различные виды аналитических, коммерческих и финансовых операций, которые включают реальные значения макроэкономических показателей NYSE, NADDAW, ASE, OEX, DOW и др., индексы инфляции, статистические данные биржевых сводок по различным видам продукции, а также информацию по фьючерсным контрактам и многое другое.

•   BrainMaker Accelerator - специализированная нейроплата акселератор на базе сигнальных процессоров TMS320C25 фирмы Texas Instruments. Вставленная в персональный компьютер, она в несколько раз ускоряет работу пакета BrainMaker.

•   BrainMaker Accelerator Pro - профессиональная многопроцессорная нейронная плата. Она содержит пять сигнальных процессоров TMS320C30 и 32 Мбайт оперативной памяти.

В настоящее время на рынке программных средств имеется большое количество разнообразных пакетов для конструирования нейронных сетей и решения различных задач. Пакет BrainMaker можно назвать ветераном рынка. Кроме представителей этого семейства, к хорошо известным и распространенным программным средствам можно отнести NeuroShell (WardSystem’s Group), Neuro Works (Neural Ware Inc.) и NeuroSolutions (NeuroDimension Inc.). Объектно-ориентированные программы среды семейства NeuroSolutions предназначены для моделирования искусственной нейронной сети произвольной структуры. Пользователю систем NeuroSolutions предоставлены возможности исследования и диалогового управления. Все данные в сети доступны для просмотра в процессе обучения посредством разнообразных инструментов визуализации. Проектирование искусственной нейронной сети в системе NeuroSolutions основано на модульном принципе, который позволяет моделировать стандартные и новые топологии. Важным преимуществом системы является наличие специальных инструментов, позволяющих моделировать динамические процессы в искусственной нейронной сети.

Применение нейросетевых технологий целесообразно при решении задач, имеющих следующие признаки:

•   отсутствие алгоритмов решения задач при наличии достаточно большого числа параметров;

•   наличие большого объема входной информации, характеризующей исследуемую проблему;

•   зашумленность, частичная противоречивость, неполнота или избыточность исходных данных.

Нейросетевые технологии нашли широкое применение в таких направлениях, как распознавание печатного текста, контроль качества продукции на производстве, идентификация событий в ускорителях частиц, разведка нефти, борьба с наркотиками, медицинские и военные приложения, управление и оптимизация, финансовый анализ, прогнозирование и др.

В сфере экономике нейросетевые технологии могут использоваться для классификации и анализа временных рядов путем аппроксимации сложных нелинейных функций. Экспериментально установлено, что модели нейронных сетей обеспечивают большую точность при выявлении нелинейных закономерностей на фондовом рынке по сравнению с регрессионными моделями.

Нейросетевые технологии активно используются в маркетинге для моделирования поведения клиентов и распределения долей рынка. Нейросетевые технологии позволяют отыскивать в маркетинговых базах данных скрытые закономерности.

Моделирование поведения клиентов позволяет определить характеристики людей, которые будут нужным образом реагировать на рекламу и совершать покупки определенного товара или услуги.

Сегментирование и моделирование рынков на основе нейросетевых технологий дает возможность построения гибких классификационных систем, способных осуществлять сегментирование рынков с учетом многообразия факторов и особенностей каждого клиента.

Технологии искусственных нейронных сетей имеют хорошие перспективы при решении задач имитации и предсказания поведенческих характеристик менеджеров и задач прогнозирования рисков при выдаче кредитов. Не менее актуально применение искусственных нейронных сетей при выборе клиентов для ипотечного кредитования, предсказания банкротства клиентов банка, определения мошеннических сделок при использовании кредитных карточек, составления рейтингов клиентов при займах с фиксированными платежами и т.д.

Следует помнить о том, что применение нейросетевых технологий не всегда возможно и сопряжено с определенными проблемами и недостатками.

. Необходимо как минимум 50, а лучше 100 наблюдений для создания приемлемой модели. Это достаточно большое число данных, и они не всегда доступны. Например, при производстве сезонного товара истории предыдущих сезонов недостаточно для прогноза на текущий сезон из-за изменения стиля продукта, политики продаж и т.д. Даже при прогнозировании спроса на достаточно стабильный продукт на основе информации о ежемесячных продажах трудно накопить исторические данные за период от 50 до 100 месяцев. Для сезонных товаров проблема еще более сложна, так как каждый сезон фактически представляет собой одно наблюдение. При дефиците информации модели искусственных нейронных сетей строят в условиях неполных данных, а затем проводят их последовательное уточнение.

. Построение нейронных сетей требует значительных затрат труда и времени для получения удовлетворительной модели. Необходимо учитывать, что излишне высокая точность, полученная на обучающей выборке, может обернуться неустойчивостью результатов на тестовой выборке - в этом случае происходит «переобучение» сети. Чем лучше система адаптирована к конкретным условиям, тем меньше она способна к обобщению и экстраполяции и тем скорее может оказаться неработоспособной при изменении этих условий. Расширение объема обучающей выборке позволяет добиться большей устойчивости, но за счет увеличения времени обучения.

. При обучении нейронных сетей могут возникать «ловушки», связанные с попаданием в локальные минимумы. Детерминированный алгоритм обучения не в силах обнаружить глобальный экстремум или покинуть локальный минимум. Одним из приемов, который позволяет обходить «ловушки», является расширение размерности пространства весов за счет увеличения числа нейронов скрытых слоев. Некоторые возможности для решения этой проблемы открывают стохастические методы обучения. При модификации весов сети только на основе информации о направлении вектора градиента целевой функции в пространстве весов можно достичь локального минимума, но невозможно выйти из него, поскольку в точке экстремума «движущая сила» (градиент) обращается в нуль и причина движения исчезает. Чтобы покинуть локальный экстремум и перейти к поиску глобального экстремума, нужно создать дополнительную силу, которая будет зависеть не от градиента целевой функции, а от каких-то других факторов. Один из простейших методов состоит в том, чтобы просто создать случайную силу и добавить ее к детерминистической.

. Сигмоидальный характер передаточной функции нейрона является причиной того, что если в процессе обучения несколько весовых коэффициентов стало слишком большим, то нейрон попадает на горизонтальный участок функции в область насыщения. При этом изменения других весов, даже достаточно большие, практически не сказывается на величине выходного сигнала такого нейрона, а значит и на величине целевой функции.

. Неудачный выбор диапазона входных переменных - достаточно элементарная, но часто совершаемая ошибка. Если   - это двоичная переменная со значением 0 и 1, то примерно в половине случаев она будет иметь нулевое значение: = 0. Поскольку  входит в выражение для модификации веса в виде сомножителя, то эффект будет тот же, что и при насыщении: модификация соответствующих весов будет блокирована. Правильный диапазон для входных переменных должен быть симметричным, например от +1 до -1.

. Процесс решения задач нейронной сетью является «непрозрачным» для пользователя, что может вызывать с его стороны недоверие к прогнозирующим способностям сети.

. Предсказывающая способность сети существенно снижается, если поступающие на вход факты (данные) имеют значительные отличия от примеров, на которых обучалась сеть. Этот недостаток ярко проявляется при решении задач экономического прогнозирования, в частности при определении тенденций котировок ценных бумаг и стоимости валют на фондовых и финансовых рынках.

. Отсутствуют теоретически обоснованные правила конструирования и эффективного обучения нейронных сетей. Этот недостаток приводит, в частности, к потере нейронными сетями способности обобщать данные предметной области в состояниях переобучения (перетренировки).

 


Список литературы

1. Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные систем: Учебник. - М.; Финансы и статистика, 2004. - 424 с.: ил.

2. Девятков В.В. Системы искусственного интеллекта: Учеб. Пособие для вузов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. - 352 с.: ил.

.   Бухарбаева Л.Я., Танюкевич М.В. Информационная поддержка финансового менеджмента на основе программного пакета нейросетевого программирования Brainmaker 3.11: Методические указания. / Уфимск. гос. авиац. техн. унив-т. - Уфа, 2001. - 46 с.

.   Черняховская Л.Р., Шкундина Р.А. Нейро-нечёткое моделирование: Методические указания. / Уфимск. гос. авиац. техн. унив-т. - Уфа, 2004. - 22 c.

.   Балдин К.В., Уткин В.Б. Информационные системы в экономике: Учебник. - М.; Финансы и статистика, 2009.

.   Романов В.П. Интеллектуальные информационные систем в экономике: Учебник. - М.; Финансы и статистика, 2007.

.   Соколов Е.Н., Вайтнявичус Г.Г. Нейроинтеллект: от нейрона к нейрокомпьютеру. - М.: Наука, 1989.

.   Осовский С. Нейронные сети для обработки информации: Учебник. - М.; Финансы и статистика, 2002.

.   Мкртчян C. О. Нейроны и нейронные сети (Введение в теорию формальных нейронов и нейронных сетей). - М.: Энергия, 1971.

.   Позин Н.В. Моделирование нейронных структур. - М.: Наука, 1970.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.