Вопрос 18. Момент инерции типовых — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Вопрос 18. Момент инерции типовых

2019-11-19 158
Вопрос 18. Момент инерции типовых 0.00 из 5.00 0 оценок
Заказать работу

Момент инерции - величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.

Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело. Момент инерции элементарной (точечной) массы mi, отстоящей от оси на расстоянии ri, равен:

.

Момент инерции всего тела относительно оси равен:

или, для непрерывно распределенной массы:

.

Момент инерции всего тела сложной конфигурации обычно определяют экспериментально.

 Вычисление моментов инерции во многих случаях можно упростить, используя соображения симметрии и теорему Штейнера. Согласно теореме Штейнера момент инерции тела относительно какой-либо оси IA равен моменту инерции тела равен инерции тела относительно параллельной оси, проходящей через центр масс IC, сложенному с величиной ma2, где a - расстояние между осями:

IA = IC + ma2.

Вопрос 19. Теорема об изменении главного момента количеств движения системы (теорема моментов).

Теорема моментов для одной материальной точки будет справедлива для каждой из точек системы. Следовательно, если рассмотреть точку системы с массой , имеющую скорость , то для нее будет

где и - равнодействующие всех внешних и внутренних сил, действующих на данную точку.

Составляя такие уравнения для всех точек системы и складывая их почленно, получим:

Но последняя сумма по свойству внутренних сил системы равна нулю. Тогда найдем окончательно:

Полученное уравнение выражает следующую теорему моментов для системы: производнаяпо времени от главногомомента количеств движения системы относительно некоторого неподвижного центра, равна сумме моментов всех внешних сил системы относительно того же центра.

Проектируя обе части равенства на неподвижные оси Оху z, получим:

Уравнения выражают теорему моментов относительно любой неподвижной оси.

В кинематике было показано, что движение твердого тела в общем случае сла­гается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изу­чена с помощью теоремы о движении центра масс, а вращатель­ная - с помощью теоремы моментов.

Практическая ценность теоремы моментов состоит еще в том, что она, аналогично теореме об изменении количества движения, по­зволяет при изучении вра­щательного движения системы исключать из рас­смотрения все наперед неиз­вестные внутренние силы.

 

 

№20 МОМЕНТ ИНЕРЦИИ - величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступат. движении. В механике различают M. и. осевые и центробежные. Осевым M. и. тела относительно оси z наз. величина, определяемая равенством

где mi - массы точек тела, hi - их расстояния от оси z, r - массовая плотность, V - объём тела. Величина Iz является мерой инертности тела при его вращении вокруг оси (см. Вращательное движение ). Осевой M. и. можно также выразить через линейную величину rz, наз. радиусом инерции относительно оси z, по ф-ле Iz = M r2z, где M - масса тела. Размерность M. и.- L 2 M; единицы измерения -кг.м2.

Центробежными M. и. относительно системы прямоуг. осей х, у, z, проведённых в точке О, наз. величины, определяемые равенствами

или соответствующими объёмными интегралами. Эти величины являются характеристиками динамич. неуравновешенности тела. Напр., при вращении тела вокруг оси z от значений Ixz и Iyz зависят силы давления на подшипники, в к-рых закреплена ось.

M. и. относительно параллельных осей z и z' связаны соотношением (теорема Гюйгенса)

где z' - ось, проходящая через центр массы тела, d - расстояние между осями.

M. и. относительно любой проходящей через начало координат О оси Ol с направляющими косинусами a, b, g находится по ф-ле

Зная шесть величин Ix, Iy, Iz, Ixy, Iyz, Izx, можно последовательно, используя ф-лы (4) и (3), вычислить всю совокупность M. и. тела относительно любых осей. Эти шесть величин определяют т. н. тензор инерции тела. Через каждую точку тела можно провести 3 такие взаимно перпендикулярные оси, наз. гл. осями инерции, для к-рых Ixy = Iyz= Izx = 0. Тогда M. и. тела относительно любой оси можно определить, зная гл. оси инерции и M. и. относительно этих осей.

M. и. тел сложной конфигурации обычно определяют экспериментально. Понятием о M. и. широко пользуются при решении мн. задач механики и техники. Лит.: Гернет M. M., Ратобыльский В. Ф., Определение моментов инерции, M., 1969; Фаворин M. В., Моменты инерции тел. Справочник, M., 1970; см. также лит. при ст. Динамика. С. M. Таре.

                   Момент инерции тела относительно оси. Радиус инер­ции.

Положение центра масс характеризует распределение масс системы не полностью. Например (рис.32 ), если расстояния h от оси Oz каждого из одинаковых шаров А и В увеличить на одну и ту же величину, то положение центра масс системы не изменится, а распределение масс станет другим, и это скажется на движении системы (вращение вокруг оси Oz при прочих равных условиях будет происходить медленнее).

Рис.32

 

Поэтому в механике вводится еще одна характеристика распре­деления масс - момент инерции. Моментом инерциитела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

Заметим также, что момент инерции тела – это геометрическая характеристика тела, не зависящая от его движения.

Осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т.е. что осевой момент инерции является ме­рой инертности тела при вра­щательном движении.

Согласно формуле момент инерции тела равен сумме момен­тов инерции всех его частей от­носительно той же оси. Для од­ной материальной точки, нахо­дящейся на расстоянии h от оси, .

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси О z называется линейная величина , определяемая равенством

,

где М - масса тела. Из определения следует, что радиус инерции геометрически равен расстоянию от оси О z той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

В случае сплошного те­ла, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве , обратится в интеграл. В результате, учи­тывая, что , где - плотность, а V- объем, получим

или

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела.

Моменты инерции некоторых однородных тел:

1.Тонкий однородный стержень длины l и массы М. Вычислим его момент инерции относи­тельно оси А z, перпендикулярной к стержню и прохо­дящей через его конец А (рис. 33).

Рис.33

 

Направим вдоль АВ координатную ось Ах. Тогда для любого элементарного отрезка длины dx величина h = x, а масса , где - масса единицы длины стержня. В результате

Заменяя здесь его значением, найдем окончательно:

2. Тонкое круглое однородное кольцо радиуса R и массы М. Найдем его момент инерции относительно оси Cz, перпендикулярной плоскости кольца и проходящей через его центр (рис.34, а). Так как все точки кольца находятся от оси Cz на расстоянии hk = R, то

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массы М и радиуса R относитель­но ее оси.

3. Круглая однородная пластина или цилиндр ра­диуса R и массы М. Вычислим момент инерции круглой пла­стины относительно оси С z, перпендикулярной к пластине и прохо­дящей через ее центр (см. рис.34, а). Для этого выделим элементарное кольцо радиуса r и ширины dr (рис.34, б).

Рис.34

 

Площадь этого кольца равна , а масса , где - масса единицы площади пластины. Тогда для выделенного элементарного кольца будет

а для всей пластины . Заменяя здесь его значением, найдем окончательно

Такая же формула получится, очевидно, и для момента инерции однородного круглого цилиндра массы М и радиуса R относительно его оси О z (риc.34, в).

4. Прямоугольная пластина, конус, шар. Опуская выкладки, приведем формулы, определяющие моменты инерции следующих тел:

а) сплошная прямоугольная пластина массы М со сторонами АВ = а и BD = b (ось х направлена вдоль стороны AB, ось у - вдоль BD):

б) прямой сплошной круглый конус массы М с радиусом основания R (ось z направлена вдоль оси конуса):

г) сплошной шар массы М и радиуса R (ось z направлена вдоль диаметра):

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.