Краткая история корпускулярно-волнового дуализма — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Краткая история корпускулярно-волнового дуализма

2019-08-07 176
Краткая история корпускулярно-волнового дуализма 0.00 из 5.00 0 оценок
Заказать работу

Уже во время Исаака Ньютона (конец 1600-х) физики столкнулись с вопросом: состоит ли свет из частиц или волн. Ньютон, хотя и колебался, все же склонялся к частицам и назвал их корпускулами, в то время как Христиан Гюйгенс приводил доводы в пользу волн. Представление о частицах света Ньютона возобладало до начала 1800-х, когда открытие, что свет может сам с собой интерферировать (глава 10), убедило физиков в правильности волновых воззрений Гюйгенса. В середине 1800-х Джеймс Кларк Максвелл поставил волновое описание волны на твердую опору своих объединяющих законов электричества и магнетизма, и физики решили, что проблема, наконец, разрешилась. Однако это было до появления квантовой механики.

В 1890-х Макс Планк заметил в форме спектра излучения, испускаемого очень горячими объектами, намеки на то, что физики что-то упустили в понимании природы света. В 1905 г. Эйнштейн показал то, чего не доставало: свет иногда ведет себя как волна, а иногда как частица (теперь называемая фотоном). Эйнштейн объяснил, что он ведет себя как волна, когда интерферирует сам с собой, но как

частица в фотоэлектрическом эффекте, когда слабый пучок света падает на поверхность металла. Луч выбивает электроны из металла по одному, именно так, как если бы с электронами сталкивались, выбивая их с поверхности металла, отдельные частицы света (отдельные фотоны). По энергии выбиваемых электронов Эйнштейн определил, что энергия фотона всегда обратно пропорциональна длине волны света. Таким образом, свойства фотона переплетены с волновыми свойствами: длина волны однозначно связана с энергией фотона. Открытие Эйнштейном дуализма волновых и корпускулярных свойств света и первые квантовомеханические законы физики, которые он начал строить вокруг этого открытия, обеспечили ему в 1922 г. Нобелевскую премию 1921 г.

Хотя Эйнштейн сформулировал общую теорию относительности почти единолично, он был только одним среди многих тех, кто внес свой вклад в законы квантовой механики — законы «царства малого».

Когда Эйнштейн обнаружил дуализм волн/частиц света, он еще не понимал того, что электрон или протон тоже могут вести себя иногда как частицы, а иногда как волны. Об этом никто не догадывался до середины 1920-х, когда Луи де Бройль сформулировал такую гипотезу, а затем Эрвин Шрединдгер использовал ее как основу для полного набора законов квантовой механики, законов, в которых электрон является волной вероятности. Вероятности чего? Вероятности локализации частицы. Эти «новые» законы квантовой механики (которые оказались чрезвычайно успешными в объяснении поведения электронов, протонов, атомов и молекул) не будут нас особенно волновать в этой книге. Однако время от времени некоторые из их особенностей будут все же для нас важны. Такой важной особенностью для этой главы является электронное вырождение.

Из расчетов Фоулера следовало, что поскольку электроны в Сириусе В и других белых карликах сжаты в столь малых ячейках, давление вырождения в них гораздо больше температурного (вызванного теплом). Соответственно, когда Сириус В остывает, его слабое термическое давление исчезает, а огромное давление вырождения остается и продолжает противостоять гравитации.

Таким образом, решение парадокса белых карликов Эддингтона имеет две стороны. Во-первых, Сириус В не сдерживает влияние гравитации с помощью температурного давления, как думали ранее, до появления квантовой механики: основную роль играет давление вырождения. Во-вторых, когда Сириус В остывает, ему нет надобности расширяться до плотности камня, чтобы поддерживать себя; как раз наоборот, он будет вполне удовлетворительно поддерживаться давлением вырождения при существующей плотности 4 млн г/см3.

Читая все это и изучая математические выкладки в Мадрасской библиотеке, Чандрасекар был попросту очарован. Это было его первое соприкосновение с современной астрономией, и он обнаружил глубокие следствия двух, идущих рука об руку, революционных идей физики XX века: общая теория относительности Эйнштейна с новым взглядом на природу пространства и времени проявилась в красноволновом сдвиге света, испускаемого Сириусом В, а новая квантовая механика с корпускулярно-волновым дуализмом была ответственна за внутреннее давление Сириуса В. Такая астрономия представлялась благодатным полем, на котором молодой человек мог бы проявить себя.

Продолжая обучение в Мадрасе, Чандрасекар обнаружил дальнейшие приложения квантовой механики к астрономической Вселенной. Он даже написал небольшую статью о своих идеях, отправил ее в Англию Фоулеру, с которым ранее никогда не встречался, и Фоулер представил ее к публикации.

Наконец, в 1930 г. в возрасте 19 лет Чандрасекар получил индийский эквивалент степени бакалавра и в последнюю неделю июля ступил на борт парохода, отплывающего в далекую Англию. Он был принят для продолжения образования в Кембриджский университет — место, где работали его кумиры Фоулер и Эддингтон.

 

Предельная масса

 

 

Восемнадцать дней плавания по морю из Мадраса в Саутгемптон были для Чандрасекара первой за много месяцев возможностью спокойно подумать о физике, не отвлекаясь на рутину учебы и экзаменов. Морское уединение способствовало размышлениям, которые были весьма плодотворны. Настолько, что фактически помогли получить ему Нобелевскую премию, правда, лишь 54 года спустя и только после серьезной борьбы за признание мировым астрономическим сообществом.

На борту парохода Чандрасекар позволил своим мыслям вернуться к белым карликам, парадоксу Эддингтона и разрешению парадокса Фоулером. Решение Фоулера почти наверняка было правильным, и другого не было. Однако Фоулер до конца не разработал детали баланса между вырожденным давлением и гравитацией в звездах типа белого карлика, не рассчитал также и их внутреннюю структуру: каким образом от поверхности к центру меняются плотность, давление и гравитация звезды. И это был вызов — дразнящая проблема, помогающая к тому же бороться со скукой во время долгого путешествия.

Чтобы найти опору при исследовании структуры звезды, Чандрасекару необходимо было получить ответ на следующий вопрос.

Допустим, вещество, из которого состоит белый карлик, уже сжато до некоторой плотности (например, до 1 млн г/см3). Сожмем вещество (т.е. уменьшим его объем и увеличим плотность) еще на 1%. Вещество будет противиться этому дополнительному сжатию, увеличивая свое внутреннее давление. На сколько процентов возрастет это давление? Физики используют термин «адиабатический коэффициент» для такого процентного изменения давления, обусловленного одним процентом дополнительного сжатия. В этой книге я буду пользоваться более наглядным названием — сопротивление сжатию, или просто сопротивление. (Его не следует путать с «электрическим сопротивлением», это совершенно разные понятия.)

Чандрасекар вывел сопротивление сжатию, изучая шаг за шагом последствия однопроцентного увеличения плотности вещества белого карлика: результирующее уменьшение размера электронной ячейки, уменьшение длины волны электрона, увеличение его энергии и скорости и, наконец, возрастание давления. Результат оказался прост: однопроцентное увеличение плотности приводит к увеличению давления на 5/3% (1,667 %). Сопротивление вещества белого карлика, следовательно, было равно 5/3.

За много десятилетий до плавания Чандрасекара астрофизики рассчитали составляющие баланса между гравитацией и давлением внутри любой звезды, сопротивление сжатию которой не зависит от глубины. То есть звезды, давление и плотность которой возрастают так, что если продвигаться все глубже внутрь, увеличение плотности на 1% будет по-прежнему сопровождаться тем же фиксированным приращением давления. Детали получающейся структуры звезды содержались в книге Эддингтона «Внутреннее строение звезд» — этой книгой Чандрасекар весьма дорожил и потому взял ее с собой на борт корабля. Поэтому когда Чандрасекар обнаружил, что вещество белого карлика имеет не зависящее от давления сопротивление сжатию, он был очень доволен. Теперь, обратившись к книге Эддингтона, он мог сразу узнать внутреннюю структуру звезды: как плотность и давление меняются от поверхности к центру.

Среди прочего открытого Чандрасекаром в результате объединения формул, приведенных в книге Эддингтона, с его собственными вычислениями, были выведены значения плотности и скорости вырожденного движения электронов в центре Сириуса В. Ответ состоял в следующем: плотность в центре звезды составляла 360 тыс. г/см3 (или 6 т/дюйм3); средняя скорость электронов = 57% скорости света.

Как неудобно много! Чандрасекар, как и Фоулер до него, рассчитывал сопротивление вещества белых карликов, основываясь на законах квантовой механики, но игнорируя релятивистские эффекты. Однако если какой-либо объект движется с околосветовой скоростью (даже если это частица, управляемая квантовомеханическими законами), то становятся важными эффекты теории относительности. При скорости, составляющей 57% скорости света, эти эффекты не должны быть особенно велики, но у более массивного белого карлика большая гравитация требует большего давления в центре звезды для поддержания баланса сил, и средняя скорость электронов, соответственно, будет больше. В таком белом карлике уже нельзя игнорировать релятивистские эффекты. Поэтому Чандрасекар вернулся к исходной точке своего анализа — вычислению сопротивления вещества белого карлика, чтобы на этот раз постараться учесть релятивистские эффекты.

Но их строгий учет потребовал бы объединения законов специальной теории относительности и законов квантовой механики, объединения, которое было разработано позднее совместными усилиями величайших физических умов. Чандрасекару, только недавно закончившему университет, в одиночку это было, конечно, не под силу. Однако уже тогда он смог достаточно оценить принципиальные эффекты, вызываемые высокой скоростью электронов.

Квантовая механика утверждает, что когда достаточно плотное вещество сжимается еще больше, делая каждую электронную ячейку еще меньше, длина волны электрона должна уменьшаться и, соответственно, должна увеличиваться энергия вырожденного движения. Чандрасекар, однако, понял, что природа дополнительной энергии электронов различна и зависит от того, движется ли электрон много медленнее света или же со скоростью, близкой к световой. Если перемещение электрона медленное, то, как обычно, увеличение энергии означает более быстрое движение, т.е. более высокую скорость. Если же электрон движется уже с околосветовой скоростью, то его скорость не сможет сколько-нибудь значительно увеличиться (иначе она превысит световой предел!). Поэтому приращение энергии принимает другую форму, незнакомую в повседневной жизни: дополнительная энергия переходит в инерционность, т.е. возрастает сопротивление электрона ускорению.

Эти две различные судьбы добавочной энергии (дополнительная скорость против дополнительной инерционности) приводят к разным увеличениям электронного давления, а следовательно, и к разным сопротивлениям сжатию. Чандрасекар установил: при низких скоростях электрона сопротивление равно 5/3, как он и рассчитал раньше, а при высоких — 4/3.

Объединив затем полученное им сопротивление 4/3 для релятивистски вырожденного вещества (т.е. вещества настолько плотного, что вырожденные электроны движутся со скоростями, близкими к скорости света) с формулами, приведенными в книге Эддингтона, Чандрасекар вывел свойства белых карликов с высокой плотностью и большой массой. Результат оказался поразительным: вещество с высокой плотностью с трудом может сдерживать гравитацию — настолько, что действие гравитации может быть уравновешено давлением, только если масса звезды меньше 1,4 солнечной. Это означало, в принципе не может существовать белых карликов с массой, превышающей 1,4 массы Солнца!

Имея достаточно ограниченные знания по астрофизике, Чандрасекар был озадачен полученным странным результатом. Только позже, после обсуждения его с Эддингтоном и другими учеными в Кембридже, он пришел к пониманию. Если белый карлик тяжелее Солнца в 1,4 раза, гравитация полностью превозмогает давление вырождения. Если более тяжелая звезда истощает свой внутренний запас тепла и остывает, тяготение выигрывает противоборство с давлением и заставляет звезду неминуемо сжиматься. Но до каких пор? Ответ (в нейтронную звезду или черную дыру) мы рассмотрим в следующих двух главах. Однако в то время Чандрасекар был еще далек от таких проблем.

В тот момент он был просто поставлен в тупик. Вновь и вновь он проверял свои вычисления, но не находил ошибки. Поэтому в оставшиеся несколько дней своего путешествия он старательно записал результаты, оформив их для публикации в две статьи. В одной он описал свои выводы о структуре белых карликов малой массы и плотности, таких как Сириус В. В другой очень кратко объяснялся его вывод, согласно которому не существует белых карликов в 1,4 раза тяжелее Солнца.

***

Когда Чандрасекар прибыл в Кембридж, Фоулер был в отъезде. В сентябре, после возвращения Фоулера, Чандрасекар сразу же посетил его и вручил обе свои статьи. Фоулер одобрил первую и отослал ее для публикации в Philosophical Magazine, вторая же статья о максимальной массе белых карликов привела его в недоумение. Он не смог понять доказательства невозможности существования белых карликов с массой, большей 1,4 солнечной массы, полученное Чандрасекаром, но поскольку он был скорее физик, чем астроном, то попросил своего коллегу, известного астронома Е.А. Милна посмотреть статью. Когда и тот не смог понять приводимых в ней доказательств, Фоулер отказался рекомендовать статью в печать.

Чандрасекар был раздосадован. Прошло уже три месяца, как он приехал в Англию, и два месяца Фоулер держал его рукописи. Слишком долго, чтобы ждать одобрения для публикации. Уязвленный Чандрасекар прекратил все попытки опубликовать вторую статью в Британии и отослал по почте рукопись в Америку, в Astrophysical Magazine.

Несколько недель спустя пришел ответ редактора из Чикагского университета: рукопись послана на рецензию американскому физику Карлу Эккарту. В рукописи Чандрасекар приводил без объяснения результаты своих релятивистских и квантовомеханических расчетов, согласно которым сопротивление сжатию при высокой плотности среды составляет 4/3. Это сопротивление, равное 4/3, было существенно для установления предела массы белого карлика. Если бы сопротивление было больше, белые карлики могли бы быть сколь угодно тяжелыми, и Эккарт думал, что оно действительно больше. Чандрасекар немедленно дал ответ, содержащий математическое доказательство равенства сопротивления 4/3 (четырем третям). Эккарт, вникнув в детали, признал правоту Чандрасекара и одобрил рукопись для публикации. Наконец, спустя год после написания она была напечатана[38].

Реакцией астрономического сообщества было непроницаемое молчание. Казалось, никто не заинтересовался. Поэтому Чандрасекар, желая поскорее получить степень доктора философии, обратился к более насущным задачам.

Три года спустя, получив степень доктора, Чандрасекар посетил Россию, чтобы обменяться идеями с советскими учеными. В Ленинграде молодой армянский астроном Виктор Амазаспович Амбарцумян заявил Чандрасекару, что ни один астроном в мире не поверит в его странный предел массы до тех пор, пока на основании физических законов он не рассчитает массы достаточного числа белых карликов и ясно не покажет, что все они лежат ниже провозглашенного порога. При этом было бы явно недостаточно, утверждал Амбарцумян, чтобы Чандрасекар проанализировал только белые карлики с относительно низкой плотностью и сопротивлением, равным 5/3, и белые

- ЧЕРНЫЕ ДЫРЫ И СКЛАДКИ ВРЕМЕНИ

карлики с чрезвычайно высокой плотностью и сопротивлением 4/3. Ему следовало бы также исследовать несколько белых карликов с промежуточными значениями плотности и сопротивления и показать, что они также имеют массу, меньшую 1,4 солнечной. По возвращении в Кембридж Чандрасекар принял вызов Амбарцумяна.

В качестве основы для анализа белых карликов с промежуточными значениями плотности необходимо было иметь уравнение состояния их вещества при любых значениях плотности — от низкой до предельно большой. (Под термином «состояние» вещества физики понимают плотность и давление в веществе, или, что то же самое, его плотность и сопротивление сжатию, поскольку из плотности и сопротивления можно вычислить давление. Под «уравнением состояния» понимается соотношение между сопротивлением и плотностью, т. е. сопротивление «как функция» плотности.)

К концу 1934 г., когда Чандрасекар принял вызов Амбарцумяна, уравнение состояния для белых карликов, благодаря вычислениям Эдмунда Стоунера из университета Лидса в Англии и Вильгельма Андерсона из Тартусского университета в Эстонии, было уже известно. Уравнение состояния Стоунера—Андерсона показало, что когда вещество белого карлика сжимается все сильнее и сильнее, переходя от нерелятивистского режима низкой плотности и малых скоростей электронов в релятивистскую область чрезвычайно высоких плотностей и околосветовых скоростей движения электронов, сопротивление вещества сжатию плавно спадает от 5/3 до 4/3 (левая часть рис. 4.3). Трудно придумать более простое поведение.

Чтобы ответить на вызов Амбарцумяна, Чандрасекар должен был соединить уравнение состояния (зависимость сопротивления от плотности) с законами баланса между давлением и гравитацией и, исходя из этого, получить дифференциальное уравнение [39]  , описывающее внутреннюю структуру звезды, т.е. изменение плотности звезды в зависимости от расстояния до ее центра. Затем требовалось решить полученное дифференциальное уравнение для десятка или около того звезд, плотность вещества в центре которых меняется от низких до чрезвычайно высоких значений. Только решая дифференциальное

 

уравнение для каждой отдельной звезды, он мог узнать ее массу и установить меньше ли она 1,4 солнечной.

Для звезд как с малой, так и с предельно большой плотностью, исследованных Чандрасекаром на борту парохода, решение соответствующего дифференциального уравнения и вытекающее из него строение звезды нашлось в книге Эддингтона. Однако для звезд с промежуточными значениями плотности вывести решение с помощью математических формул Чандрасекару никак не удавалось. Вычисления были слишком сложны. Ничего не оставалось, кроме как решить дифференциальные уравнения численно, с помощью счетной машины.

В 1934 г. счетные машины весьма отличались от тех компьютеров, которые появились в 90-е годы. Они напоминали, скорее, простейшие из карманных калькуляторов. За один раз они могли лишь перемножить два числа, причем пользователю требовалось сначала вручную ввести эти числа, а затем повернуть рукоятку. Рукоятка приводила в движение сложную систему шестеренок и колесиков, выполнявших умножение и выдававших ответ.

Но даже и такие калькуляторы были тогда роскошью, и получить к ним доступ было непросто. У Эддингтона, однако, был один -«Брауншвайгер», размер которого примерно соответствовал размеру настольных персональных компьютеров 90-х, и поэтому Чандрасекар, к тому времени уже хорошо знакомый с великим человеком, просто пришел к Эддингтону и попросил на время одолжить ему машину. В тот момент Эддингтон был вовлечен в спор о белых карликах с Милном и был весьма заинтересован поскорее узнать их детально рассчитанную внутреннюю структуру; поэтому он позволил Чандрасекару перенести «Брауншвайгер» в его комнату в Тринити-колледже,

Вычисления были длинными и утомительными. Каждый вечер после обеда Эддингтон, работавший в Тринити-колледже, поднимался к Чандрасекару, чтобы приободрить его и взглянуть, как продвигается дело.

Наконец, много дней спустя, Чандрасекар закончил. Он ответил на вызов Амбарцумяна. Для каждого из десяти типичных белых карликов он рассчитал внутреннюю структуру и затем, зная ее, — полную массу и поперечный размер звезды. Все массы, как и предполагалось, оказались меньше 1,4 солнечной. Более того, когда он нанес все значения масс и диаметров на диаграмму и соединил точки, получилась одна плавная кривая (правая часть рис. 4.3); измеренные массы и поперечники Сириуса В, а также других известных белых карликов относительно хорошо согласовывались с полученной кривой. (С учетом исправлений, полученных в результате современных астрономических наблюдений, согласие становится еще лучше; обратите внимание на новые значения 1990 г. массы и поперечника Сириуса В на рис. 4.3.) Гордый своими результатами, полагая, что астрономы всего мира, наконец, согласятся с его утверждением, что белые карлики не могут быть тяжелее, чем 1,4 массы Солнца, Чандрасекар был счастлив.

Особенно приятной казалась возможность представить полученные результаты на заседании Королевского астрономического общества в Лондоне. Выступление было назначено на пятницу 11 января. Согласно протоколу, детали повестки дня предстоящего заседания должны были оставаться в секрете вплоть до начала заседания, однако мисс Кей Вильямс, ученый секретарь Общества и близкий друг Чандрасекара, обычно тайно заранее посылала ему программу выступлений. Получив в четверг вечером программу по почте, Чандрасекар был удивлен, обнаружив, что сразу после его доклада следует выступление Эддингтона по вопросу о «релятивистском вырождении». Чандрасекар недоумевал. В течение последних нескольких месяцев Эддингтон заходил навестить его, по крайней мере, раз в неделю, читал черновики, но ни разу не упомянул о собственных исследованиях на ту же тему!

Подавив досаду, Чандрасекар спустился к обеду. Эддингтон был в столовой, обедая за главным столом. Приличия, однако, не позволяли просто так побеспркоить столь известного человека, даже если вы были с ним знакомы, и он проявлял некий интерес к вашей деятельности. Поэтому Чандрасекар, сдержавшись, просто сел в стороне.

Врезка 4.2

 


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.