Определение корней трансцендентных уравнений — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Определение корней трансцендентных уравнений

2017-05-16 482
Определение корней трансцендентных уравнений 0.00 из 5.00 0 оценок
Заказать работу

Уравнение F(x) =0 называется трансцендентным, если хотя бы одна из функций в нем не является алгебраической.

 

Пример

 

(6.4)

 

Регулярных аналитических методов решения трансцендентных уравнений не существует. В каждом конкретном случае ищется свой индивидуальный прием.

Общим является только графический метод, состоящий в построении графика функций F(x).

Точки пересечения построенного графика с осью абсцисс и есть искомые действительные корни уравнения.

В среде MathCAD возможны два способа нахождения корней уравнения (6.4)

· с помощью методов символьной математики согласно правилу 6;

· с помощью встроенной функции root в подменю f(x) меню «Вставка» согласно правилу 2.

Рассмотрим применение обоих методов на примере нахождения корней уравнения (6.4).

Поскольку неизвестно решение (значения х, при которых F(x) =0), то строим его график с целью приблизительного определения искомого действительного решения.

 

х:= -10 … +10

 

 

Рис. 6.35 Графическое решение

 

Из графика видно, что это решение, определяемое как точка пересечения графика с осью абсцисс, лежит в промежутке значений х = 2…3.

Решение по правилу 6

Записываем многочлен из уравнения (6.4):

 

 

Выделяем (затемняем ■) в этом многочлене в любом месте символ переменной х – путем протаскивания курсора.

Открываем меню «Символ», подменю «Переменные» и делаем щелчок по опции «Вычислить».

На рабочем листе получается результат:

 

 

Решение по правилу 2:

Записываем уравнение:

Вводим любое имя искомого решения и знак присвоения, например:

r:=,

после которого размещаем красный визир ±.

Обращаемся к пиктограмме «Встроенная функция f(x)» на 2-ой строке текстового окна – стандартной линейке.

На появившемся после щелчка диалоговом окне в разделе «Категория функций» выбираем строку с надписью «Решение», а в разделе «Название функций» - root (корни). После нажатия на кнопку «ок» или «Вставить» на рабочем листе появляется название данной функции с четырьмя черными прямоугольниками, которые следует заполнить:

 

r:= root (■, ■, ■, ■)

 

В первое окошко вписываем имя функций F(x), во второе – переменную х, в третье и четвертое – (а) нижний и (в) верхний пределы, внутри которых ищется решение. Запись приобретает вид:

 

r: = root (F(x), x, a, в),

(пределы согласно рисунку 6.1 установлены 0 и 3).

Вновь вводим искомое решение, но теперь со знаком равенства:

 

r =,

и сразу получаем результат.

 

r = 2,8267802

 

Точность полученного результата устанавливаем путем открытия меню «Формат», подменю «Результат» и выбора требуемого числа десятичных знаков в открывшемся окне.

Проводим проверку полученного результата, для чего вычисляем значение функции F(x) при найденном значении корня.

 

x:= 2.8267802

 

F(x) = 2.287 · 10-7

 

Близость к нулю функции F(x) указывает на правильность полученного результата.

 

Вычисления по циклу

При решении самых разнообразных научно-технических задач возникает необходимость в определении зависимости функции от одного или нескольких аргументов. Например, необходимо рассчитать мощность радиосигнала в зависимости от расстояния или колебательный процесс в электрическом контуре.

При этом результаты расчета следует представить в виде массива чисел, заключив их в определенную таблицу.

При подобных многократных расчетах по одной и той же формуле или алгоритму следует:

· во-первых, выбрать «шаг» или дискрет изменения аргумента;

· во-вторых, определить точность, с которой требуется рассчитывать значение того или иного параметра.

Иногда требуется рассчитать десятки, сотни и даже тысячи значений одной и той же функции в зависимости от значения аргумента.

В подобных случаях экономный путь решения задачи состоит в организации расчета в рамках определенного цикла.

В таком цикле автоматическое обращение к функции производится согласно зашитому в программу алгоритму.

При этом пользователь указывает только шаг, точность и количество вариантов расчета.

Самый простой способ организации циклического расчета состоит в использовании оператора цикла «m…n», пиктограмма которого расположена на математической панели инструментов «Матрица».

После вызова щелчком этого оператора в него следует ввести значения нижнего и верхнего пределов:

 

k:= M…N,

 

где k – дискретно на 1 изменяемый параметр, последовательно принимающий целые значения от M ≥0 до N. Причем при M <0 все значения функции при 0≤ k < M принимают значения, равные 0.

Аргумент при циклическом расчете изменяется с «шагом» (дискретом) ∆, значение которого может быть выбрано любым.

 

Пример циклического расчета

Рассчитать с «шагом» затухающий колебательный процесс, описываемый функцией:

 

,

 

при А = 10, α = 0,5, F = 10 и N = 1000.

Организуем цикл расчета с помощью записи k:= 0…N и выражений для аргумента tk и дискретной функции Yk(tk), полученной из непрерывной функции Y(t).

 

 

Строим график дискретной функции :

 

 

Рис.6.36 График дискретной функции

 

Вывод в виде таблицы дискретных значений осуществляется путем записи Y= или .

По умолчанию на рабочий лист выводится 16 значений функции.

Щелкнув по графику функции, обрамляют ее рамкой и путем протаскивания вниз курсора расширяют таблицу до любого требуемого значения k≤N.

При протаскивании курсора вверх таблица наоборот сжимается.

Таким же образом можно вывести и таблицу значений аргумента, сделав в рассматриваемом случае запись .

 

Вопросы для самоконтроля

1. Способы определения корней алгебраических уравнений в среде MathCAD

2. Способы определения корней трансцендентных уравнений в среде MathCAD

3. Способы организации вычислений по циклу

 

Обработка данных

Обработка данных – это важная сфера применения компьютерной математики.

При решении многих задач в радиотехнике, исходная функция задается в табличной форме или по точкам (например, экспериментально полученные амплитудная или амплитудно-частотная характеристики усилителя). Вместе с тем, для дальнейшего анализа необходимо знать значение функции при любом значении аргумента, а не только при некоторых его конкретных значениях. Данной цели, т.е. к переходу от дискретного описания функции к непрерывному, служит процедура аппроксимации. При определении функции между узловыми точками аппроксимация называется интерполяцией, а за их пределами – экстраполяцией.

«MathCAD» располагает двумя способами интерполяции:

· кусочно-линейной;

· сплайновой (более точная).

 


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.