
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Топ:
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов...
Оснащения врачебно-сестринской бригады.
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Интересное:
Принципы управления денежными потоками: одним из методов контроля за состоянием денежной наличности является...
Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются...
Уполаживание и террасирование склонов: Если глубина оврага более 5 м необходимо устройство берм. Варианты использования оврагов для градостроительных целей...
Дисциплины:
![]() |
![]() |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Приближенное вычисление значений функции
Пусть требуется вычислить значение функции f(x) при с заданной точностью
Если функцию f(x) в интервале (-R;R) можно разложить в степенной ряд
и , то точное значение
равно сумме этого ряда при
, т.е.
а приближенное – частичной сумме , т.е.
Точность этого равенства увеличивается с ростом n. Абсолютная погрешность этого приближенного равенства равна модулю остатка ряда, т.е. ,
где
Таким образом, ошибку можно найти, оценив остаток
ряда.
Для рядов лейбницевского типа
В остальных случаях (ряд знакопеременный или знакоположительный) составляют ряд из модулей членов ряда и для него стараются найти положительный ряд с большими членами, который легко бы суммировался. И в качестве оценки берут величину остатка этого нового ряда.
Приближенное вычисление определенных интегралов
Бесконечные ряды применяются также для приближенного вычисления неопределенных и определенных интегралов в случаях, когда первообразная не выражается в конечном итоге через элементарные функции либо нахождение первообразной сложно.
Пусть требуется вычислить с точностью до
. Если подынтегральную функцию f(x) можно разложить в ряд по степеням x и интервал сходимости (-R;R) включит в себя отрезок [a;b], то для вычисления заданного интеграла можно воспользоваться свойством почленного интегрирования этого ряда. Ошибку вычислений определяют так же, как и при вычислении значений функций.
Приближенное решение дифференциальных уравнений
Если решение дифференциального уравнения не выражается через элементарные функции в конечном виде или способ его решения слишком сложен, то для приближенного решения уравнения можно воспользоваться рядом Тейлора.
Числовые ряды
Основные понятия
Числовым рядом называется выражение вида
где – действительные или комплексные числа, называемые членами ряда,
- общим членом ряда.
Ряд считается заданным, если известен общий член ряда , выраженный как функция его номера n:
.
Сумма первых n членов ряда называется n -й частичной суммой ряда и обозначается через , т.е.
Если существует конечный предел последовательности частичных сумм ряда
, то этот предел называют суммой ряда и говорят, что ряд сходится. Записывают:
Если не существует или
=
, то ряд называют расходящимся. Такой ряд суммы не имеет.
Рассмотрим некоторые важные свойства рядов:
Свойство 1. Если ряд сходится и его сумма равна S, то ряд
где с – произвольное число, также сходится и его сумма равна cS. Если же ряд расходится и
, то и ряд
расходится.
Обозначим n -ю частичную сумму ряда через
. Тогда
Следовательно,
,
т.е. ряд сходится и имеет сумму cS.
Покажем теперь, что если ряд расходится,
, то и ряд
расходится. Допустим противное: ряд
сходится и имеет сумму
.
Тогда
Отсюда получаем:
т.е. ряд сходится, что противоречит условию о расходимости ряда.
Свойство 2. Если сходится ряд и сходится ряд
А их суммы равны и
соответственно, то сходятся и ряды
,
причем сумма каждого равна соответственно .
Обозначим n -е частичные суммы рядов ,
и
через
,
и
соответственно. Тогда
т.е. каждый из рядов сходится, и сумма его равна
соответственно.
Из свойства 2 вытекает, что сумма (разность) сходящегося и расходящегося рядов есть расходящийся ряд.
Свойство 3. Если к ряду прибавить (или отбросить) конечное число членов, то полученный ряд и ряд
сходятся или расходятся одновременно.
Обозначим через S сумму отброшенных членов, через k – наибольший из номеров этих членов. Чтобы не менять нумерацию оставшихся членов ряда, будем считать, что на месте отброшенных членов поставили нули. Тогда при n>k будет выполняться равенство , где
– это n -я частичная сумма ряда, полученного из ряда
путем отбрасывания конечного числа членов. Поэтому
+
. Отсюда следует, что пределы в левой и правой частях одновременно существуют или не существуют, т.е. ряд
сходится (расходится) тогда и только тогда, когда сходятся (расходятся) ряды без конечного числа его членов.
Аналогично рассуждаем в случае приписывания к ряду конечного числа членов.
Ряд
=
называется n -м остатком ряда . Он получается из ряда отбрасыванием n первых его членов. Ряд
получается из остатка добавлением конечного числа членов. Поэтому, согласно свойству 3, ряд
и его остаток
=
одновременно сходятся или расходятся.
Из свойства 3 также следует, что если ряд сходится, то его остаток
стремится к нулю при
, т.е.
|
|
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...
Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!