Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Абсолютная и условная сходимость числовых рядов.

2017-05-14 626
Абсолютная и условная сходимость числовых рядов. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Свойства абсолютно сходящихся рядов.

Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся, если сам сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место: на такие ряды переносятся основные свойства конечных сумм:

1. Если ряд абсолютно сходится и имеет сумму S, то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму S, что и исходный ряд (теорема Дирихле)

2. Абсолютно сходящиеся ряды с суммами и можно почленно складывать (вычитать). В результате получается абсолютно сходящийся ряд, сумма которого равна + (или соответственно - )

3. Под произведением двух рядов и понимают ряд вида

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

Степенные ряды

Функциональные ряды

Основные понятия

Ряд, членами которого являются функции от х, называется функциональным:

Придавая х определенное значение , мы получим числовой ряд

,

который может быть как сходящимся, так и расходящимся.

Если полученный числовой ряд сходится, то точка называется точкой сходимости ряда ; если же ряд расходится – точкой расходимости функционального ряда.

Совокупность числовых значений аргумента х, при которых функциональный ряд сходится, называются его областью сходимости.

В области сходимости функционального ряда его сумма является некоторой функцией от х: S=S(x). Определяется она в области сходимости равенством ,где – частичная сумма ряда.

Среди функциональных рядов особую роль играет ряд, членами которого являются степенные функции аргумента х, т.е. так называемый степенной ряд:

Действительные (или комплексные) числа называются коэффициентами ряда, - действительная переменная.

Ряд расположен по степеням х. Рассматривают также степенной ряд, расположенный по степеням , т.е. ряд вида , где – некоторое постоянное число.

Сходимость степенных рядов.

Область сходимости степенного ряда содержит по крайней мере одну точку: х=0 (ряд сходится в точке)

Теорема Н. Абеля

Теорема

Если степенной ряд сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству

По условию ряд сходится. Следовательно, по необходимому признаку сходимости . Отсюда следует, что величина ограничена, т.е. найдется такое число М >0, что для всех n выполняется неравенство , n=1, 2,..

Пусть , тогда величина и, следовательно, , т.е. модуль каждого члена ряда не превосходит соответствующего члена сходящегося (q<1) ряда геометрической прогрессии. Поэтому по признаку сравнения при ряд абсолютно сходящийся.

Следствие

Если ряд расходится при , то он расходится и при всех х, удовлетворяющих неравенству

Действительно, если допустить сходимость ряда в точке , для которой , то по теореме Абеля ряд сходится при всех х, для которых , и, в частности, в точке , что противоречит условию.


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2025 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.