Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Методы микроскопии в микробиологии. Их практическое применение.

2018-01-30 1151
Методы микроскопии в микробиологии. Их практическое применение. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

В микробиологических исследованиях применяют световые и электронные микроскопы; методы оптической и электронной микроскопии.

Оптический микроскоп. Наиболее важной оптической частью микроскопа являются объективы, которые делятся на сухие и иммерсионные.

Сухие объективы с относительно большим фокусным расстоянием и слабым увеличением применяются для изучения микроорганизмов, имеющих крупные размеры (более 10–20 мкм), иммерсионные (лат. immersio – погружение) с фокусным расстоянием – при исследовании более мелких микробов.

При микроскопии иммерсионным объективом х90 обязательным условием является его погружение в кедровое, персиковое или в вазелиновое масло, показатели преломления света у которых близки предметному стеклу, на котором делают препараты. В этом случае падающий на препарат пучок света не рассеивается и, не меняя направления, попадает в иммерсионный объектив. Разрешающая способность иммерсионного микроскопа находится в пределах 0,2 мкм, а максимальное увеличение объекта достигает 1350.

При использовании иммерсионного объектива вначале центрируют оптическую часть микроскопа. Затем поднимают конденсор до уровня предметного столика, открывают диафрагму, устанавливают объектив малого увеличения и при помощи плоского зеркала освещают поле зрения. На предметное стекло с окрашенным препаратом наносят каплю масла, в которую под контролем глаза осторожно погружают объектив, затем, поднимая тубус, смотрят в окуляр и вначале макро–, а потом микровинтом устанавливают четкое изображение объекта. По окончании работы удаляют салфеткой масло с фронтальной линзы объектива.

Микроскопия в тёмном поле зрения проводится при боковом освещении и обычно применяется при изучении подвижности бактерий или обнаружении патогенных спирохет, поперечник которых может быть меньше 0,2 мкм. Чтобы получить яркое боковое освещение, обычный конденсор заменяют специальным параболоидом–конденсором, в котором центральная часть нижней линзы затемнена, а боковая поверхность зеркальная.Этот конденсор задерживает центральную часть параллельного пучка лучей, образуя темное поле зрения.Краевые лучи проходят через кольцевую щель, попадают на боковую зеркальную поверхность конденсора, отражаются от нее и концентрируются в его фокусе. Если на пути луча нет каких–либо частиц, он преломляется, падая на боковую зеркальную поверхность, отражается от нее и выходит из конденсора. Когда луч встречает на своем пути микробы, свет отражается от них и попадает в объектив – клетки ярко светятся.Обычно исследование в темном поле зрения проводится под сухой системой. При этом небольшую каплю материала помещают на предметное стекло и накрывают покровным, не допуская образования пузырьков воздуха.

Фазово–контрастная и аноптральная микроскопия основаны на том, что оптическая длина пути света в любом веществе зависит от показателя преломления. Это свойство используют с целью увеличить контрастность изображения прозрачных объектов, какими являются микробы, т. е. для изучения деталей их внутреннего строения.Препараты в световом поле зрения контрастные – положительный контраст. При отрицательном фазовом контрасте на темном фоне виден светлый объект. Вокруг изображений нередко возникает ореол.

Большей четкости изображения малоконтрастных живых микробов (даже некоторых вирусов) достигают в аноптральном микроскопе. Одной из важнейших его деталей является линза объектива, расположенная вблизи «выходного» зрачка, на которую нанесен слой копоти или меди, поглощающий не менее 10 % света. Благодаря этому фон поля зрения приобретает коричневый цвет, микроскопируемые объекты имеют различные оттенки – от белого до золотисто–коричневого.

Люминесцентная микроскопия основана на способности некоторых клеток и красителей светиться при попадании на них ультрафиолетовых и других коротковолновых лучей света.

Различают собственную (первичную) флюоресценцию и наведенную (вторичную). Так как большая часть микробов не обладает собственной флюоресценцией, они обрабатываются красителями, способными флюоресцировать (вторичная люминесценция). В качестве флюорохромов используют аурамин (для обработки микобактерий туберкулеза), акридин жёлтый (гонококки), корифосфин (коринебактерии дифтерии), флюоресцеинизотиоцианат (для мечения антител).

Люминесцентная микроскопия отличается рядом преимуществ: дает цветное изображение и значительную контрастность; позволяет обнаружить живые и погибшие микроорганизмы, прозрачные и непрозрачные объекты; установить локализацию бактерий, вирусов и их антигенов в пораженных клетках организма.

Электронный микроскоп. В электронном микроскопе вместо света используется поток электронов в безвоздушной среде, на пути которых находится анод.Источником электронов является электронная пушка (вольфрамовая нить, разогреваемая до 2500–2900 °С). Оптические линзы заменены электромагнитами. Между вольфрамовой нитью и анодом возникает электрическое поле в 30 000–50 000 Вт, что сообщает электронам большую скорость, и они, проходя через отверстие анода, попадают в первую электромагнитную линзу (конденсор). Электронные лучи на выходе из конденсора собираются в плоскости исследуемого объекта. Они отклоняются под разными углами за счет различной толщины и плотности препарата и попадают в объективную электромагнитную линзу, снабженную диафрагмой. Электроны, незначительно отклонившиеся при встрече с объектом, проходят через диафрагму, а отклонившиеся под большим углом – задерживаются, благодаря чему обеспечивается контрастность изображения. Линза объектива дает промежуточное увеличение изображения, которое наблюдается через смотровое окно. Проекционная линза может увеличивать изображение во много раз. Это изображение принимается на флюоресцирующий экран и фотографируется. Разрешающая способность электронных микроскопов равна 1,0 –0,14нм


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.