Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Полиномы Жигалкина. Построение полиномов Жигалкина.

2017-12-21 459
Полиномы Жигалкина. Построение полиномов Жигалкина. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Каждую логическую функцию можно представить в виде полинома Жигалкина, представляющего собой элементарные конъюнкции соединены операцией исключающего или Å. Например: f(x,y,z) = (y & z) Å (x & z) Å (x & y & z)

Процедура построения Полинома Жигалкина

По таблице истинности строим СДНФ.

СДНФ приводим к минимальной ДНФ

Выражаем дизъюнкции Ú и отрицания ù через операции конъюнкции & и исключающего или Å.

x Ú y = x Å y Å (x & y) ù x = x Å 1

4) Раскрываем скобки используя дистрибутивность x & (y Å z) = (x & y) Å (x & z), (x Å y) & z = (x & z) Å (y & z). В результате могут получится формула двух видов

(xa & xb &...) Å... Å (xc & xd &...) или (xa & xb &...) Å... Å (xc & xd &...) Å 1

Сокращаются повторяющиеся элементы внутри скобок при помощи a&a=a, a&1=a, 1&a=a

Сокращаются одинаковые скобки при помощи поглощения aÅa=0, aÅ0=a, 0Åa=a.

Пример: построение полинома Жигалкина

Пусть для функции получена минимальная ДНФ:

f(x,y,z) = ( ù x & y & z) Ú (x & ù z)

Используя ù a = a Å 1 заменим отрицание:

f(x,y,z) = ((x Å 1) & y & z) Ú (x & (z Å 1))

Используя a Ú b = a Å b Å (a & b) заменим дизъюнкцию:

f(x,y,z) = ((x Å 1) & y & z) Å (x & (z Å 1)) Å ((x Å 1) & y & z & x & (z Å 1))

Используя дистрибутивность раскроем скобки:

f(x,y,z) = (x & y & z) Å (1 & y & z) Å (x & z) Å (x & 1) Å
Å (x & y & z & x & z) Å (1 & y & z & x & z) Å
Å (x & y & z & x & 1) Å (1 & y & z & x & 1)

Применим законы поглощения внутри скобок:

f(x,y,z) = (x & y & z) Å (y & z) Å (x & z) Å x Å (y & x & z) Å

Å (y & x & z) Å (y & z & x) Å (y & z & x)

Применим законы поглощения для одинаковых скобок

f(x,y,z) = (x & y & z) Å (y & z) Å (x & z) Å x

Классы логических функций: сохраняющие 0, сохраняющие 1, монотонные, линейные, двойственные, самодвойственные. Критерий поста.

Классы логических функций

Класс S0: Функции «сохраняющие 0» - это логические функции, значение которых равны 0, если все аргументы равны 0: f(0,0,...,0)=0. Например Ú

Класс S1: Функции «сохраняющие 1» - это логические функции, значение которых равны 1, если все аргументы равны 1: f(1,1,...,1)=1. Например &

Класс M: "Монотонные" функции -это логические функции, которые можно выразить через & и Ú.

Монотонную функцию можно распознать по ее таблице истинности. Для этого нужно взять все пары наборов переменных, которые отличаются всего в одном столбце. Например: 0,0,0,0 и 0,0,0,1; 1,0,0,1 и 1,1,0,1. Пусть в одном наборе переменных в некотором столбце стоит "0", а в другом наборе переменных в этом же столбце стоит "1". Нельзя, чтобы значение функции при этих наборах было "1", а потом "0" соответственно. Пример монотонной функции: Ú.

Наборы переменных Значение функций

00; 01 0; 1

00; 10 0; 1

01; 11 1; 1

10; 11 1; 1

Класс L:"Линейные" функции – это логические функции, которые можно выразить через Å, 0 и 1.

Чтобы узнать, линейна ли функция, надо выразить ее через полином Жегалкина и посмотреть, не встречается ли там операция &. Если нет, то функция линейна.

Класс D: «Двойственные» функции f и g, т.е. функции

удовлетворяющие условию f(ù x1, ù x2,..., ù xN) = ù g(x1,x2,...,xN)

Двойственные функции легко обнаружить с помощью простого приема. Надо заменить в таблице истинности все "0" на "1", а все "1" на "0". Полученная таблица истинности и будет таблицей двойственной функции. Пример & и Ú.

Класс S:"Самодвойственные" функции, т.е. функции, которые двойственны сами себе:

f(ù x1, ù x2,..., ù xN) = ù f(x1, x2,..., xN).

Критерий Поста

Система булевых функций F является полной тогда и только тогда, когда она не содержится ни в одном из классов S0, S1, S, L, M. T.е. когда в ней имеется хотя бы одна функция, не сохраняющая 0, хотя бы одна функция, не сохраняющая 1, хотя бы одна несамодвойственная функция, хотя бы одна немонотонная функция и хотя бы одна нелинейная функция.

Упрощение СДНФ при помощи Карты Карно. Булева алгебра и коммутационные схемы. Анализ и синтез коммутационных схем. Проектирование полубитного сумматора.


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.