Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...
Топ:
Выпускная квалификационная работа: Основная часть ВКР, как правило, состоит из двух-трех глав, каждая из которых, в свою очередь...
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Интересное:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Финансовый рынок и его значение в управлении денежными потоками на современном этапе: любому предприятию для расширения производства и увеличения прибыли нужны...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Дисциплины:
2017-12-09 | 416 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Можно было бы продолжить изложение и обоснование различных алгоритмов, накопленных в математике. Взамен этого мы лишь перечислим некоторые из них, для того чтобы создать у читателя правильное впечатление об их разнообразии и многочисленности. Алгоритмами являются правила для решения систем алгебраических линейных уравнений (существует большое число таких правил), правила дифференцирования функций и правила интегрирования, изучаемые в курсе математического анализа, правило Штурма — Лиувилля нахождения приближенного значения корня произвольного уравнения f(х)=0. Алгоритмами являются также и многие другие правила для решения различных задач с помощью циркуля и линейки, известные читателю из школьного курса. Если бы мы вздумали приводить здесь все эти алгоритмы и обосновывать их корректность, то, безусловно, не довели бы эту работу до конца из-за ее большого объема.
Читатель уже представляет себе, как появляются алгоритмы. Обычно алгоритм разрабатывают, имея в виду какую-нибудь задачу. Для ее решения и создают алгоритм. При этом перед математиком возникает задача, коренным образом отличающаяся от той, для решения которой должен быть создан алгоритм. Эту задачу можно сформулировать так: «Задан такой-то класс исходных данных и такая-то задача (проблема), для которой эти исходные данные допустимы. Требуется найти алгоритм, решающий указанную проблему», т. е. перед математиком возникает задача нахождения алгоритма.
Очень большое число таких задач на нахождение алгоритма математики успешно решили. Но целый ряд задач на построение алгоритмов упорно не поддавался решению. Приведем одну из них.
В 1742 г. математик X. Гольдбах, петербургский академик, в письме к Л. Эйлеру выдвинул проблему: доказать, что каждое целое число, которое больше или равно шести, может быть представлено в виде суммы трех простых чисел.
|
Этой проблеме можно придать следующий вид. Найти алгоритм, который позволил бы для любого целого числа, большего, чем 6, найти хотя бы одно разложение на три простых слагаемых. В ответном письме Л. Эйлер заметил, что для четных чисел эта проблема эквивалентна проблеме разложения числа на два простых слагаемых. В 1937 г. И. М. Виноградов доказал, что всякое достаточно большое нечетное число представляется суммой трех простых чисел; впоследствии была указана и нижняя граница, предполагаемая в доказательстве И. М. Виноградова, так что для нечетных чисел проблема Гольдбаха уже решена, но для четных чисел она не решена и до настоящего времени.
Заметим, что алгоритм ее решения был бы очень несложен: если задано четное N, нужно было бы (с помощью алгоритма Эратосфена) найти все не превосходящие его простые числа, далее последовательно отнимать каждое из них от заданного N и смотреть, не содержится ли разность среди уже полученных простых чисел. Беда в том, что до сих пор не удалось доказать корректность этого алгоритма, и потому нельзя его считать алгоритмом разложения любого четного числа на два простых слагаемых.
Интересно отметить, что некоторые задачи на нахождение алгоритма, долго не поддававшиеся решению, оказались неразрешимыми. К их числу, например, относятся той очень древние геометрические проблемы: задача о квадратуре круга, задача о трисекции угла и задача об удвоении куба.
Задача о квадратуре круга заключается в следующем: требуется найти метод (алгоритм) построения с помощью циркуля и линейки квадрата, равновеликого данному кругу. Эта задача является массовой, потому что исходным данным для нее может быть любой круг.
Задача трисекции угла гласит: требуется найти общий метод (алгоритм) деления произвольного угла с помощью циркуля и линейки на три равные части. Проблема тоже является массовой, потому что исходным данным может быть любой угол.
|
Наконец, задача удвоения куба гласит: требуется найти алгоритм, позволяющий по стороне любого куба с помощью циркуля и линейки построить сторону куба, объем которого вдвое больше объема заданного.
Невозможность решения этих задач была строго доказана. Неудача попыток решения некоторых проблем после того, как была доказана невозможность решения некоторых других проблем, породила определенную «подозрительность». Ученые стали опасаться, что затрачивая без успеха свои усилия на решение некоторых проблем, они стараются достигнуть невозможного. Возникло мнение о необходимости выявления неразрешимых проблем. Для задач на отыскание алгоритма это должно сводиться к разработке методов доказательства несуществования алгоритма.
Нужно подчеркнуть, что алгоритмы для квадратуры круга, трисекции угла и удвоения куба невозможны, если допускать только операции, выполнимые с помощью циркуля и линейки, причем линейка используется только для проведения прямых через пары точек и никак иначе. Уже Архимед предложил метод трисекции угла, в котором допускалась операция, состоящая из двух действий: 1) нанесения на линейке двух точек, копирующих две данные точки чертежа, 2) такого перемещения линейки, чтобы одна из отмеченных на ней точек скользила по прямой, а другая по окружности.
Это значит, что за счет расширения набора допустимых операций иногда можно часть проблем, для которых нет алгоритма, сделать разрешимыми. Конечно, если ничем не ограничиваться при определении допустимых операций, то многие проблемы станут разрешимыми (но все ли? об этом см. в § 1 гл. 5).
В конце второй главы мы снова пришли к вопросу о том, сколь сложны или, лучше, сколь просты должны быть операции, выполнение которых может быть рассматриваемо как отдельный шаг алгоритмического процесса. Во всяком случае, нельзя считать допустимой такую операцию, способ получения результата которой нам неизвестен. Иначе многие нерешенные проблемы мы стали бы ошибочно считать решенными.
Глава 3
|
|
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!