Температурные деформации трубопроводов и способы их компенсации. — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Температурные деформации трубопроводов и способы их компенсации.

2017-12-09 529
Температурные деформации трубопроводов и способы их компенсации. 0.00 из 5.00 0 оценок
Заказать работу

Технологические трубопроводы эксплуатируют при различных температурах среды, поэтому пуск и остановка технологического процесса всегда вызывают значительные температурные деформации.

Абсолютное значение изменения длины трубопровода при его нагреве или охлаждении определится по формуле

∆l=α·l·∆t

где α- коэффициент линейного расширения металла трубы; для стали а=12-10-6 м/(м °С);

l- длина трубопровода;

∆t- абсолютная разность температур трубопровода до и после нагрева (охлаждения);

Если трубопровод не может свободно удлиняться или сокращаться (а технологические трубопроводы именно таковы), то температурные деформации вызывают в трубопроводе напряжения сжатия (при удлинении) или растяжения (при сокращении), которые определяют по формуле:

δ=E·ξ=E·∆l/l

δ=E·α·∆t

где E-модуль упругости материала трубы

∆l -относительное удлинение (укорочение) трубы

Если принять для стали Е=2,1 *105 МН/м2, то по формуле (13) получится, что при нагреве (охлаждении) на 1°С температурное напряжение достигнет 2,5 МН/м2, при =300 °С значение =750 МН/м2. Из сказанного следует, что трубопроводы, работающие при температурах, изменяющихся в широких пределах, во избежание разрушения должны быть снабжены компенсирующими устройствами, легко воспринимающими температурные напряжения

Вследствие разности температур транспортируемых продуктов и окружающей среды трубопроводы подвержены температурным деформациям. Обычно трубопроводы имеют значительную длину, поэтому их общая температурная деформация может оказаться достаточно большой и вызвать разрыв или выпучивание трубопровода. В связи с этим необходимо обеспечить способность трубопровода компенсировать эти деформации.

Для компенсации температурных деформаций на технологических трубопроводах применяют П-образные, линзовые, волнистые и сальниковые компенсаторы.

П-образные компенсаторы (рис. 5.1) широко применяют для наземных технологических трубопроводов независимо от их диаметра. Такие компенсаторы обладают большой компенсирующей способностью, их можно применять при любых давлениях однако они

громоздки и требуют установки специальных опор. Обычно их располагают горизонтально и снабжают дренажными устройствами.

Линзовые компенсаторы используют для газопроводов при рабочих давлениях до 1,6 МПа. По конструкции они аналогичны компенсаторам кожухотрубчатых теплообменников.

Волнистые компенсаторы (рис. 5.2) используют для трубопроводов с неагрессивными и среднеагрессивными средами при давлении до 6,4 МПа. Такой компенсатор состоит из гофрированного гибкого элемента 4, концы которого приварены к патрубкам 1. Ограничительные кольца 3 предотвращают выпучивание элемента и ограничивают изгиб его стенки. Снаружи гибкий элемент защищен кожухом 2, внутри имеет стакан 5 для уменьшения гидравлического сопротивления компенсатора.

На трубопроводах из чугуна и неметаллических материалов устанавливают сальниковые компенсаторы (рис. 5.3), которые состоят из корпуса 3, закрепленного на опоре 1, набивки 2 и грундбуксы 4. Компенсация температурных деформаций происходит за счет взаимного перемещения корпуса 3 и внутренней трубы 5. Сальниковые компенсаторы имеют высокую компенсирующую способность, однако из-за трудности обеспечения герметизации при транспортировании горючих, токсичных и сжиженных газов их не используют.

Трубопроводы укладывают на опоры, расстояние между которыми определяется диаметром и материалом труб. Для стальных труб с диаметром до 250 мм это расстояние составляет обычно 3—6 м. Для крепления трубопроводов применяют подвески, хомуты и скобы. Трубопроводы из хрупких материалов (стекла, графитовых композиций и др.) укладывают в сплошных лотках ия сплошных основаниях.


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.