Связанные с прямой на плоскости (обзор) — КиберПедия 

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Связанные с прямой на плоскости (обзор)

2017-11-21 336
Связанные с прямой на плоскости (обзор) 0.00 из 5.00 0 оценок
Заказать работу

 

 

1. Геометрический смысл знака трехчлена .

Теорема 1. Если в аффинной системе координат прямая задана уравнением , то полуплоскости с границей определяются неравенствами и .

Сформулированная теорема, выражающая геометрический смысл знака трехчлена , позволяет выяснять, лежат ли две точки по одну сторону от прямой или по разные стороны. Рассмотрим простейший пример.

Задача 1. Выяснить, пересекает ли прямая отрезок , если .

Решение. Определим знак трехчлена в точке .

Определим знак трехчлена в точке .

Следовательно, точки и лежат по разные стороны от данной прямой, поэтому прямая пересекает отрезок .

Выяснение расположения точек относительно прямой, в свою очередь, применяется при решении геометрических задач, связанных с нахождением условий, определяющих внутренние области углов, треугольников или полос.

2. Взаимное расположение двух прямых.

Теорема 2. Пусть в аффинной системе координат прямая задана уравнением -уравнением .

1) Прямые и пересекаются тогда и только тогда, когда коэффициенты при и в их уравнениях не пропорциональны, т.е.

;

Чтобы найти координаты точки пересечения прямых и , надо решить систему уравнений и .

2) Прямые и параллельны тогда и только тогда, когда коэффициенты при и пропорциональны, а свободные члены им не пропорциональны, т.е.

;

3) Прямые и совпадают тогда и только тогда, когда коэффициенты при и и свободные члены в их уравнениях пропорциональны, т.е.

.

Рассмотрим пример применения этой теоремы.

Задача 2. Выяснить взаимное расположение прямых и .

Решение. Находим из уравнений прямых .

Отношение мы найти не можем, т.к. делить на 0 нельзя. Поэтому поменяем прямые местами и найдем отношения

.

Следовательно, прямые и пересекаются. Отношение находить уже нет необходимости.

Задача 3. Найти уравнение прямой, проходящей через точку и параллельной прямой .

Решение. Пусть - искомая прямая.

Заметим, что задачу можно решить разными способами. Например, взяв за направляющий вектор прямой направляющий вектор прямой (т.к. , то ), можно воспользоваться каноническим уравнением прямой .

Но мы решим задачу, используя теорему 2.

Из теоремы 2 следует, что так как , то общее уравнение прямой будет иметь вид:

,

т.е. можно считать, что отличаться уравнения прямых и будут только свободными членами.

Чтобы найти С, используем то, что . Подставляя координаты точки в уравнение прямой , найдем С: .

Тогда

.

3. Пучок прямых. Уравнение пучка прямых.

Множество всех прямых плоскости, проходящих через данную точку , называется пучком прямых. Точка называется центром этого пучка.

Множество всех прямых плоскости, параллельных данной прямой , называется пучком параллельных прямых.

Пучок прямых определяется заданием его центра , пучок параллельных прямых – заданием ненулевого вектора , параллельного прямым пучка.

Теорема 3. Пусть известны в аффинной системе координат уравнения двух прямых пучка с центром в точке :

,

.

Тогда уравнение пучка прямых с центром будет иметь вид:

,

Рис. 60
где - действительные числа, не равные нулю одновременно. Они определяют некоторую прямую пучка.

Геометрический смысл и : это координаты направляющего вектора прямой в базисе (рис. 60).

Рассмотрим пример применения этой теоремы.

Задача 4. Найти уравнение прямой , проходящей через точку и через точку пересечения прямых и .

Решение. Заметим, что искомое уравнение можно найти, вычислив координаты точки пересечения прямых и и применив уравнение прямой, заданной двумя точками. Но при решении системы уравнений прямых и получаются громоздкие вычисления.

Поэтому задачу лучше решить по теореме 3. Запишем уравнение пучка прямых с центром в точке :

, (18)

где .

Так как , то искомая прямая принадлежит данному пучку. Найдем и , определяющие . Так как , то ее координаты удовлетворяют уравнению (18):

. Подставим в уравнение (18): . Заметим, что (действительно, если , то - противоречие с условием ).

Разделим обе части уравнения на :

; .

 

Лекция 10


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.